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PREFACE

The idea of this book was conceived at the Australian National University
nearly ten years ago when the two authors realized that the courses they taught,
Uncertainty and Information in Jiirgen Eichberger’s case and Financial
Economics in lan Harper’s case, had more than a few topics in common. The
Financial Economics course focussed on the finance aspects of general equilib-
rium theory with asset markets. This theory constitutes the intellectual founda-
tion of asset pricing models commonly applied in the analysis of financial
markets. The Uncertainty and Information course, on the other hand, focussed
on the then new theory of contracts in the presence of asymmetric informa-
tion. Such models can be used to explain the form of contracts widely used in
insurance markets and in financial intermediation. Asymmetric information
provides a rationale for the standard debt contract, for deposit contracts, and
may explain allocative problems including credit rationing and bank runs.

A good deal of our excitement with the subject arose from our different ap-
proaches to the material. While one of the authors emphasized the formal logic
of models and propositions, the other adopted a more applied approach,
searching the theory to find insight into problems faced by the applied finan-
cial economist. The challenge to express results in a form amenable to inter-
pretation and appreciation by applied economists has informed the exposition
in all sections of the book. As a consequence, we have achieved a book that is
rigorous, but not mathematically concise, narrowly focussed rather than com-
prehensive in the selection of topics covered, and innovative in joining the gen-
eral equilibrium approach of finance theory with the contract approach of the
theory of asymmetric information. An overarching interest of both authors is
the contrast between financial markets and financial intermediaries as altern-
ative institutional solutions to the problem of intertemporal allocation. This
interest serves as our leitmotiv and informs both our choice of topics and
method of approach. To this extent, at least, our book differs from other texts
in the field.

From our experience, there is considerable demand for courses in financial
economics which focus on the economic foundations of concepts that are
widely used in applied finance and banking. We hope this book offers students
a unifying theoretical perspective on the diverse issues addressed by finance
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and contract theory, as well as preparing them with the background and skills
necessary to approach more specialised literature.

Lecture notes prepared by the authors for their courses at the Australian
National University formed the early versions of several sections of the book.
The book did not take shape, however, until both authors had moved to the
University of Melbourne where they again found themselves teaching com-
panion courses in their respective fields. The notion of presenting one course
team-taught by the two authors spurred them to action. We are grateful for
comments and suggestions from a number of colleagues at different stages of
the project. Frank Milno followed the work with encouragement and helpful
criticism. Simon Grant and David Kelsey provided us with valuable feedback,
particularly on Chapter 1. Anonymous referees offered valuable suggestions
on how to link certain sections of the book with the most recent literature.
None of these bears any responsibility for shortcomings which may remain.

Many people have played a part in the production of the book, including
students of our courses who encouraged us to improve our exposition, even of
standard topics. In transforming our handwritten notes into typescript, we
were ably supported by Andrew Mills, Susan Waterfall and Nerida Slizys. We
wish to acknowledge the Programme in Monetary and Financial Economics at
the University of Melbourne and the Ian Potter Centre for International
Finance at the Melbourne Business School for providing financial support to
cover the costs of technical drawing and word-processing. We also acknow-
ledge the Department of Economics at Monash University who hosted Ian
Harper duringa period of study leave spent writing parts of the book. The final
camera-ready versions of the diagrams were prepared by Sven Boland and
Undine Ewald of the University of Saarland. Their care and precision with this
task contributed significantly to the final version of the book and deserves
special mention.

Our last but by no means least acknowledgment is to our families for their
forbearance and support during the many hours spent writing this book.

J.E.and LR.H.
May 1996
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INTRODUCTION

Thirty years ago, students were taught economics and finance as if they were
two separate disciplines. Finance majors steered clear of economics because it
was ‘too theoretical’ and, in any case, they were keen to proceed to practical
matters of capital budgeting, portfolio selection, and the like, without being
unnecessarily encumbered by theoretical niceties. Serious students of eco-
nomics, on the other hand, were rarely introduced to financial issues, except
perhaps in the distant and abstract form of capital theory, since the application
of economic principles to problems in finance was underdeveloped, if not
non-existent.

During the intervening period up to the present, the research agendas of
finance and economic theorists have converged in a remarkable way. Even at a
practical level, the disciplines are much more obviously and closely related
than at any prior time. Nowadays, certainly at the graduate level but also in un-
derg hing, a good gr ding in microeconomic theory is consid-
ered essential to a proper grasp of the principles of finance. In fact, the
convergence of the two disciplines is acknowledged in the increasing currency
of the term financial economics to describe the application of general micro-
economic theory to the special problems encountered in finance.

This book aims to introduce students to the main theoretical models used
by financial economists. The literature is now so vast that some selection is
necessary. Attention is therefore confined to exposition of the essential models
from which the various branches of the literature develop. Both economics
and finance majors will benefit from this approach. The former will appreciate
how finance theory articulates with economic theory; specifically, how the
main results of finance theory emerge from suitably specialized versions of
general economic models. The latter group will recognize the specific assump-
tions upon which many results in finance theory depend and will appreciate
their importance in deciding how best to apply theory to practice.

Most of modern finance theory is based on the competitive market model
where traders have symmetric information about their environment, face
market-determined prices, and decide how much to buy and sell of particular
goods or assets. In this framework, it is possible to gain important insights
which heavily influence application. From a competitive model of asset

xi
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exchange, for example, we learn that d willingness to insure risk may result
from the possibility of diversification or from diffe es in risk preferences.
The law of one price, that perfect substitutes must trade at the same price, has
been exploited successfully to determine asset prices by noting that equilib-
rium prices must be free from arbitrage. Modern asset-pricing methods, such
as the Black-Scholes formula, have their roots in the theory of competitive
markets under symmetric information.

Parallel with the development of modern finance, new models were de-
veloped which allow us to deal with problems of asymmetric information and
information-processing. With these instruments, the extremely restrictive
assumption underlying the theory of competitive markets that all traders
share the same information about market prices and future contingencies can
be abandoned. With asymmetric information, competitive markets may no
longer be feasible and, if they are, they may no longer produce Pareto-optimal
outcomes. Institutions like banks and contracts like loans that are observed in
all developed economies emerge as rational responses to a world where in-
formation is asymmetrically distributed. Analysis of these models by compar-
ing them with competitive assumptions throws light on the conditions
governing the development of new financial markets and instruments.

Structure of the Book

The distinction between models based on symmetric information and com-
pe!mvc markets and those built on asymmetric information and contractual
hips forms the izing principle of this book. After a brief review
of the necessary prerequisites from the theory of decision-making under un-
certainty, Part I deals with the theory of competitive asset markets under sym-
metric information. In this part, we introduce the equilibrium-pricing
method which supports the Capital Asset Pricing Model (CAPM) and the
arbitrage-pricing method which lies behind the Black-Scholes pricing formula.
Also in Part I we treat the Modigliani-Miller proposition concerning the ir-
relevance of corporate finance and show the importance of a complete set of
financial markets for the successful separation of ownership and control of
firms. Though central to the analysis of firms in financial markets, the latter
problem is rarely treated in corporate finance texts. We also stress the import-
ance of market completeness for the efficiency of the financial market system
and the determinacy of equilibrium prices and allocations.
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The assumption of asymmetric information between trading partners is the
leitmotif of Part II. With symmetric information, a trade contract need only
specify the amounts and contingencies for the delivery of goods or assets and
the price at which the transaction is to be conducted. If the information about
possible contingencies or about characteristics of market participants is not
the same for all trading partners, it may be impossible to specify and enforce
the contracts required for competitive markets.

Given constraints imposed by these asy ries, a central ion in the
literature on institutional arrangements under asymmetric information con-
cerns the optimal form of contracts. Over the past twenty years, a large num-
ber of models have been developed which investigate the optimal form of
contract under various assumptions about the asymmetry of information. In
Part II of this book, we introduce the reader to the most relevant contracts in
the context of financial intermediation.

The insurance market serves as our first example for the failure of competit-
ive markets under asymmetric information. We then devise three optimal con-
tracts. Because of their practical relevance and importance, we concentrate on
insurance contracts, standard debt contracts, and the deposit contract. The in-
formational conditions which make these contracts optimal is the focus of at-
tention. In the case of the standard debt contract and the deposit contract, we
investigate the implications of the contract form. Credit rationing is one of the
implications of the debt contract and bank runs are a possible consequence of
the deposit contract.

Inder ding how informational asy ries give rise to different forms
of contract is a prerequisite to the analysis of whether and to what extent new
financial instruments, i.e. contracts, overcome the informational asymmetries
and incompleteness of financial market systems.

Target Readership

This book is best suited to instruction at the advanced undergraduate or be-
ginning graduate level. Ideally, intermediate-level courses in both economics
and finance will have been taken before a course based on this book. While the
level of technical skill required is moderate, a student should be prepared to
work through the notation m order to grasp the material. Famlllamy with the
standard math ical ed in modern courses in econom-
ics and finance will be especially helpful. On the other hand, students who seek
to acquire the knowledge and skill necessary to understand more advanced

X
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material in finance, including that published in professional journals and in
more advanced books like Huang and Litzenberger (1988), Ingersoll (1987),
and Jarrow (1988), will find this a useful intermediate book.

Special Features

We consider the careful selection of material covered in this book to be an
essential feature.

The first chapter, dealing with decision-making under uncertainty, focuses
on those issues which find application in financial economics. The main part
of the chapter treats choice among state-contingent outcomes as the primitive
notion on which decision-making over probability distributions builds. The
relationship between concepts of stochastic dominance and risk preference is
given careful exposition. The mean-variance approach is presented as a special
case of expected utility theory. All axiomatic considerations germane to a
thorough understanding of the concept are included in an appendix. A simple
and, to our knowledge, novel proof of the expected utility theorem based on
the independence axiom is provided there.

Part I presents material usually covered in finance courses. The close atten-
tion given to the implications of incomplete financial markets is, however, a
special feature of this book. The implied non-optimality and the dependence
of the equilibrium allocation on the choice of numeraire commodity incor-
porate results drawn from the most recent research in this field. The treatment
of incomplete markets allows us to question the concept of profit or value
maximization as an appropriate objective function for a firm.

Part II introduces contract models and incentive concepts which are not
commonly treated at all in finance texts. Incorporating economic analysis de-
veloped over the past twenty years under the heading of the ‘economics of un-
certainty and information’ is another special feature of this book. In this
regard, our book links those parts of the economics and finance literature of
most relevance to financial economists. It facilitates access to related work in
books by Hirshleifer and Riley (1992) and Laffont (1989).

How to Use This Book

The book begins with a brief introduction to the theory of choice under un-
certainty. The main concepts and techniques used elsewhere in the book are

xiv
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introduced at this stage. For readers who are familiar with these concepts, it is
recommended to read Section 1.5 on the mean-variance approach only. In
Appendix A, we review some concepts from probability theory and, in
Appendix B, introduce the axiomatic foundations of expected utility theory.
Though quite important as background reading, these appendices can be
omitted from a first reading without loss of continuity.

Chapters 2 to 5 constitute Part I. Chapter 2 discusses Portfolio Choice
Theory and some of its derivatives. One difference in approach compared with
most other texts is the emphasis placed on the general equilibrium economic
foundations of the models developed. The familiar results from basic finance
theory, including Mean-Variance Analysis and the Capital Asset-Pricing
Model, are covered but with an explicit link to their general equilibrium eco-
nomic foundations.

Chapter 3 explores systems of financial markets. The ideal conception of
Arrow-Debreu securities is introduced and contrasted with ordinary secur-
ities markets. Conditions under which stock markets might approach the ideal
ofcomplete contingent claims markets are derived and the implications of the

1 of markets are explored

Chapter 4 deals with the important principle of arbitrage in asset pricing,
and applies it to derive an option-pricing formula. It is shown how repeated
trading of a security can enlarge the state space, allowing assets with many
possible pay-offs to be priced.

Chapter 5 explores the role of the firm in the context of financial markets.
Since a firm’s production decision determines not only the amount of goods in
the various states of nature, but also the number of independent assets avail-
able to hedge against risks, in general shareholders will only agree on the pro-
duction decision of a firm if markets are complete. A second issue treated in
this chapter is the Modigliani-Miller ‘irrelevance’ result. The analysis grounds
the result in the framework of general equilibrium economics. It is then

straightforward to show why the value of the firm is no longer invariant to
financial structure or dividend policy when the firm does not operate in a
world of perfect markets. Though essential for an understanding of the role of
firms in an economy and of the limitations of general equilibrium models
when extended to economies with production, one can treat the two sections
of this chapter as independent of each other.

Part Il begins with Chapter 6 where we consider models with insurance con-
tracts and debt contracts and the related phenomena of adverse selection and
credit rationing. The nature of the debt contract as an incentive-compatible
arrangement between two agents unable to verify certain aspects of each
other’s behaviour is stressed.

xv
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Chapter 7 discusses the deposit contract and banking as particular institu-
tional responses to asymmetric information in financial markets. Discussion
of the nature of the deposit contract and its optimality in certain circum-
stances leads naturally to an analysis of the phenomenon of bank runs. The
issue of false signals, like rumours about the soundness of a bank, as possible
triggers for bank runs, is given particular attention.

Chapter 8 follows with a discussion of bank regulation, placing it in the con-
text of the model of bank runs presemed in Chapter 7. The main forms of bank
regulation including reserve requir pension rules, capital-ad
requirements and deposit insurance, are analysed in simple d|agrammanc
terms. The capacity of bank regulations to forestall bank runs is investigated in
each case.

Chapters 7 and 8 form a unit that should be covered jointly. Readers not in-
terested in regulatory issues can drop Chapter 8. It is, however, impossible to
fully understand Chapter 8 without first reading Chapter 7. Chapters 6, 7, and
8 form the core of Part I1. Chapter 9 concludes the book with a general discus-
sion of the evolution of financial markets and financial intermediaries.

Some Remarks on Notation

Most of the notation will be familiar to readers with some background in sta-
tistics. However, we consistently use a few conventions of which the reader
should be aware.

1. To avoid additional notation, we use the same capital letter to denote a set
and the last element of the set if it is finite. For example, we may write

S=1{1,...,5}

to indicate a set consisting of the finite elements 1,2,3,....S with Sas the last el-
ement of the list. A typical element of a set will often be indicated by the same

small letter,e.g. s € S.
2. Functions will be indicated either by

fA—> B

anotation that stresses that each element of the set A has an associated element
of the set Bwhich is identified by the function f, or by

fla) =

which stresses the dependence of the variable b on the variable a.

xvi
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3.The equality sign (=) can sometimes cause confusion. It may indicate that
there is an argument, say x, for which two functions, say fand g, have the same
value

fix) = g(x).

In other cases, the equality sign may indicate that an expression, say an integral
Ju(x) dF, can be viewed as a function, say of F, H(F). In this case, we write

H(F) := [u(x) dF.

The colon indicates the side of the equality where one finds the function sign
H(F). On the side without the colon, one finds the defining expression. This
notation is often convenient because one can also write unambiguously

J u(x) dF =: H(F).

xvii






1

DECISION-MAKING
UNDER UNCERTAINTY

This first chapter covers the basic theoretical framework for choice under conditions
of uncertainty. We begin with a formal characterization of uncertainty and develop
two ways of looking at choice under uncertainty: (i) as a choice amongst state-
dependent outcomes; and (ii) as a choice amongst different probability distributions
over outcomes. We then explain how the expected utility representation of prefer-
ences can be interpreted as a utility function over state-dependent outcomes (the
‘state-preference approach’) or as a utility function over probabllxty dnstnhuuons

Following a discussion of attitudes to risk and stochasti we introduce a
special application of expected utility theory commonly encountered in financial
economics, viz. mean-variance analysis. Two appendices provide a brief collection of
results on probability distributions and a short exposition of the axiomatic deriva-
tion of the expected utility representation.

Financial decisions are intertemporal decisions: they involve choices whose
consequences extend into the future. Since the future is unknown, financial de-
cisions are inevitably taken under conditions of uncertainty. To begin our study
of financial economics, we must first establish a conceptual distinction be-
tween ‘certainty’ and ‘uncertainty’ On this foundation, we can then construct
the formal superstructure of decision-making under uncertainty. An under-
standing of the principles of decision-making under uncertainty is essential to
a full appreciation of the various themes of financial economic analysis.

1.1 Certainty and Uncertainty: What's the Difference?

‘When economic agents choose amongst actions which are feasible for them,
they choose on the basis of consequences which the chosen actions produce.
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Very often, however, actions alone are not sufficient to determine particular
consequences. Other factors may interact with an action chosen to produce a
particular consequence. These other factors, which are beyond the control of
economic agents, are summarized as the state of the world. Numerous states of
the world are possible and, at any point in time, economic agents will be un-
certain as to the future states which will apply as the history of the world un-
folds. They will therefore be uncertain of the future consequences of any
actions they take in the present.

More formally, if A is the set of feasible actions, S the set of possible states of
the world, and Cthe set of consequences, a combination of an action a € Aand
astate s € S will produce a particular consequence ¢ € C. Thus there is a func-
tion fwhich maps actions and states into consequences:

(s,a) = c=f(s,a).

At the time of deciding upon a course of action, an agent is uncertain about the
state of the world which will co-determine the consequence of the chosen ac-
tion. Uncertainty about the state of the world will often be modelled by a prob-
ability measure on S. Some important properties of probability measures are
therefore reviewed in Appendix A.

Choosing an action a determines a consequence for each state of the world,
[(5, u) The decision over actions in A can therefore be viewed as a decision over

dependent (or state-conti [ quences. Thus a choice of some ac-
tion a, corresponds to the choxce of the state-contingent outcomes {f(s, a,) |
s €8). If the set of states is finite, S= {1, . . .,S}, one can write the state-

contingent consequences associated with action a, as a vector (¢, .. .56+ -5
¢5,), where the first index lists the state and the second the action, i.e. ¢,
f(s,a,). From this point of view, choosing a, over a, is the same as choosing
(Cpse v sCops e sE51) OVET (€15 -+ 56 - - - 5Cs2)-

A decision made under certainty is easily distinguished from a decision
made under uncertainty by looking at the function f. If fis constant with re-
spect to the state of the world, i.e. the state of the world does not influence the
consequence which arises, the decision is said to be taken under certainty. If, on
the other hand, different states lead to different consequences, the decision is
said to be under uncertainty. Thus to assume that decisions are taken under
certainty need not imply that there is no uncertainty in the world; rather the
uncertainty which is present does not bear on the problem at hand.

‘When variables do not affect the values of functions, they are usually not in-
cluded as arguments. Accordingly, states of the world are mostly left unmen-
tioned in problems of decision-making under certainty, as in the following
familiar economic example.

2



Decision-Making under Uncertainty

Example 1.1. Consider a price-taking firm which maximizes profit by choos-
inga single input, say, labour ¢. Given a production function ®(¢), and prices w
for the input and p for the output, the firm’s profit function becomes:

) =p- D) -w-e.
In this example, an action is the choice of an input level ¢ from the feasible set
of all gative real bers. The ¢ q is the resulting profit level

7(¢). Figure 1.1 depicts this decision problem for a standard production func-
tion .

()

Fig. 1.1

Note that in this example the choice of an action (a particular level of labour
input) leads to a consequence (a particular level of profit) independently of the
state of the world. This is a problem of decision-making under certainty.

Assume now that the level of output is not determined solely by the level of
labour input ¢ but depends in addition on some other factor, for example, the
weather. Relevant states of the world are weather conditions: say, rain s, and
sunshine s,. The set of states of the world is S = {s;,s,}. The fact that output now
depends on the state of the world is reflected in the production function which
is written as ®(s,¢) where s€ S.

Assume further that the firm is more productive in fine weather than
foul, i.e.:

D(s5,,6) > D(s,,¢) foralle.

Then the firm’s profit will be higher at each level of labour input when there is
sunshine than when there is rain:

(spl) i=p - D(s8) —w-€>p- D(s5p,0) —w-¢= 7(sy,6).
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If there is uncertainty about future weather conditions, the question of what
level of input (i.e. what action) to choose becomes a problem of decision-
making under uncertainty. The consequence of an action depends on the state
of the weather, i.e. f(s¢) = n1(s¢), s € S. Figure 1.2 illustrates the case.

x

; Voo

(s ) x(s.l)

Fig. 1.2 -
It should be clear from this example that decision-making under certainty is

just a special case of decision-making under uncertainty. If ®(s,,¢) = ®(s),6),

then 71(s,,¢) = 7(s,,¢) and the firm’s level of profit is independent of the pre-

vailing weather conditions. In this case, the two profit functions of Figure 1.2

coincide, and the choice problem is identical to that depicted in Figure 1.1.

1.2 Decision-Making under Uncertainty: An Alternative
Representation

There is another way to think about decision-making under uncertainty. It is
in essence identical to that described above but is sometimes easier to work
with. Since the relationship among actions, states of the world, and con-
sequences is described by the function £ §x A — Cand since a probability
measure! is defined on S, there is an induced probability distribution on the set
of consequences for each action. In other words, for each action a € A, there is
a probability distribution on Cdefined as follows:

1 i.e., there is a well-defined probability distribution on S. A review of basic concepts of probabil-
ity theory is provided in Appendix A.

4



Decision-Making under Uncertainty

For any (measurable) subset of consequences KC C
prob {K} := prob {se S| f(sa) e K}.

This simply says that the probability of a particular consequence is equal to
the probability of the states of the world which lead to this consequence given
a particular action. Note that the probability of a consequence depends upon
the action a which is chosen. So one could equally well say that the choice of an
action amounts to the choice of a probability distribution on consequences.
An equivalent way to view decision-making under uncertainty is to think
about it as a choice amongst alternative probability distributions (or lotteries,
prospects, gambles, etc.).

Example 1.1. (continued). Given the probabilities of state 1 and state 2, for
each non-negative input level ¢, the firm faces a probability distribution over
the resulting profit levels:

prob {7(s,¢)} = prob {s;}

prob {7(s;€)} = prob {s,}.
To make the example more concrete, assume the particular production
function:

_ [Ne for s=s5
Hs0) = 2-V¢ for s=s

and the particular probability distribution:
3 1
prob {s,} = z;prob {s} = T
For prices p =2 and w = 1, choosing ¢ = 1 implies the following probability
distribution over profits:

3 1
bir=1}= =; =3}=—.
prob {7 =1} 2 prob {m = 3} 3

Similarly, for ¢ = 4, the firm faces the probability distribution:

1

prob {r=0} = %;prob{n::ﬁ [ ]

The choice of an action in an uncertain world may be viewed either as the
choice of a state-dependent outcome or as the choice of a probability distribu-
tion over outcomes. The distinction is represented diagrammatically in the
following example.

Example 1.1. (continued). Suppose that the set of actions A consists of two
actions only. Recall that actions were levels of labour input ¢. Hence consider
A= {¢,,4,} to be the set of feasible actions.
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In the state-space approach, a choice of action ¢; is viewed as a choice of the
state-contjngent profit levels (7(s),¢)), 71(s,,¢;) ). Indicating the state by a sub-
script to simplify notation, the two possible levels of labour input lead to two
pairs of state-dependent profit levels:

{(m(4), m(6) ), (m(), m(6) )}
These two state-contingent profit pairs may be illustrated as two points in a
diagram with 7, and 7, on the axes (Figure 1.3).

m

(k)

EXO) Ty .

5 nh) m (k) n
Fig. 1.3
Alternatively, given a probability distribution on the set of states S = {s;, 5,},
the choice of an action ¢; can be viewed as the choice of a probability distribu-
tion on the four profit levels:
{m(4), m(@)), m(4,), m(6)}.
As explained in greater detail in Appendix A, such a probability distribution
can be represented by a vector p = (p;,p,,p3,ps) where:
1= prob {m(4))}; p, = prob {m,(¢))}
Ps = prob {m(4)}; py = prob {my(4y)}.
Hence the choice between two actions can be viewed as the choice amongst
probability vectors p. For example, suppose that the probability of s, is 0.4 and
the probability of s, is 0.6. Then the choice between the two levels of labour
input corresponds to the choice between the following probability distribu-
tions:
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| m@) me) m () ()
o] 04 06 0 0
6| 0 o 04 06 .

If there are only three basic outcomes, probability distributions are vectors
with three components p = (p;,py,p3) and it is possible to depict them in a two-
dimensional diagram. The following example illustrates this possibility.

Example 1.2. Consider the choices of a firm about eight different input levels
and suppose that there are three states {s;,5,,5;} which occur with equal prob-
ability. Assume that only three profit levels are possible (7,75, 7c) which are
ranked 7, < 7 < 7c. The mapping from states and actions (input levels) to
outcomes (profit levels) is as follows:

Action

|6 6 6 4 6 & 6 &

S| A Ma Wy My Wy Ty Mg T
States s, | my Wy Mc Mg MWy Wy T A
| me me W mg Mg My ;M M L]

Any probability distribution associated with the three profit levels (7,7 7¢)
is represented by a point with three non-negative co-ordinates (p,,pppc) that
sum to one, where p, denotes the probability of profit level 7, pg that of level
npand p that of 7c.

Since pg = 1 = p4 — pc 2 0 is unambiguously determined for any two proba-
bilities (p4,pc), one can depict any probability distribution on (7,,757¢) by a
point in Figure 1.4. The probability distributions induced by the actions in the
table are indicated in Figure 1.4 by the symbol ‘o,

Choosing between actions randomly induces further probability distribu-
tions over these outcomes. For example, if the choice between input levels ¢,
and ¢, is made by tossing a coin, choosing ¢, if ‘heads’ comes up and ¢, if ‘tails’
results, one obtains the following probability distribution over the profit levels
(mp T Tr): '

e 7, occurs if ‘heads’ results and state 1 occurs and if ‘tails’ comes up and
either state 1 or state 2 occurs; hence with probability 0.5 - 1/3 + 0.5 -
(1/3+1/3)=0.5,

® 7y occurs if ‘heads’ comes up and state 2 occurs, i.e. with probability 0.5 -
1/3 = 1/6,and

® ¢ occurs if state 3 occurs and either ‘heads’ or ‘tails’ results, hence with
probability 0.5 - 1/3 +0.5 +1/3 = 2/6.
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Fig. 1.4

This probability distribution is indicated by the symbol ‘o’ in Figure 1.4.
Clearly one can obtain any probability distribution over the three outcomes by
using an appropriate randomization over actions. [ ]

1.3 Decision-Making and Expected Utility

The two previous sections have argued that a decision-maker who faces un-
certainty about the outcomes of her actions can view the objects of her choice
either as state-contingent outcomes or as probability distributions. This raises
the question of whether the decision-maker’s preferences should order

o the set of state-contingent outcomes, or
o the set of probability distributions over outcomes.

Both approaches are possible and have been used in the literature.

The former is usually referred to as the ‘state-preference’ approach. If the set
of states is finite, one can write state-contingent outcomes as vectors (c;,... . .,s)
from the set of all state-contingent outcomes:

CS:={(cp,...,65) | ¢, = fls,@), a € A}.
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If preferences on the set CSsatisfy the usual assumptions of completeness, tran-
sitivity, and continuity, they can be represented? by V(c;, . . .,cs), a utility func-
tion V:CS— R. Notice that, in this case, it is not necessary to specify
probabilities over states or outcomes. It suffices to know what outcomes from
an action will occur in each state.

Figure 1.5 shows indifference curves for such a utility function for the case
of two states, S = 2. Three indifference curves V(c,,c;) = k;, for k; > k, > ks, are
drawn. It is assumed that the outcome is something desirable in each state.
Hence, the decision-maker prefers to get more rather than less of the outcome
in each state. This implies that the level of utility increases in the direction of
higher values of the state-contingent outcomes.

L

Fig. 1.5

Similarly, given a set of outcomes Cand a probability distribution on the set
of states,? each action induces a probability distribution on the outcomes in C.
If the set of consequences is finite, say C:= {c;, ... .,c,}, then each action deter-
mines a vector of probabilities from the set

Ani={(pp.op) € R X pi=1},
i=1
the (n— 1)-dimensional simplex, with p; = Prob ({s € S f(s,a) = ¢}).

2 Foran exgnsitinn of the general representation theorem, see e.g. Varian (1992, 111-15).
3 The function f{s,a) must also be measurable. Since this condition s satisfied for all functions one
practically works with, it is not mentioned.
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A preference ordering over such probability dlsmbullons wﬂl order the set
An, Once again, if preferences are compl and they can
be represented by a utility function U(p,, . .,p,), U: A" — R. Figure 1.6 shows
such a preference ordering for the case of three outcomes, n = 3. Indifference
curves U(p,pps) = k; for levels k; > k, > k;, have been drawn in this diagram.
Note that they increase in the direction of p;. This indicates that the conse-
quence ¢, is the most preferred outcome, since this decision-maker prefers a
probeability distribution that puts higher probability on this outcome.

Py

Fig. 1.6

The expected utility approach makes additional assumptions on the
decision-maker’s preferences over probability distributions. If these prefer-
ences satisfy a further condition,? that of independence, indifference curves
over probability distributions will be linear and parallel. Moreover, the utility
representation of preferences that comply with the independence assumption
has the following form:

n

Py

i=1

- u(c)

for some utility function over outcomes u: C— R.

4 Appendix B of this chapter provides a brief introduction to the axiomatic approach to expected
utility theory.

10
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This representation evaluates a probability distribution simply by comput-
ing the expected value of the utilities of the outcomes, u(c;). A decision-making
rule of this type had been suggested by the Swiss mathematician Daniel

Bernoulli as early as 1738. John von and Oscar M n (1944)
were lhe first, h , to recogni the independence axiom (together with
itivity, and i ) as a necessary and sufficient condi-

tion for such an expected utility representation. The utility function over out-
comes u(c;) is therefore often referred to as the von Neumann—Morgenstern
(expected) utility index.

In economics and finance, the expected utility approach has become the
dominant paradigm of decision-making under uncertainty. This is at least
partly due to two attractive features of this special representation. The curva-
ture of the von Neumann-Morgenstern utility index can be interpreted as the
decision-maker’s attitude towards risk and this interpretation turns out to be
consistent with many statistical decision rules (see Section 1.4). Furthermore,
one can view the expected utility representation either as a utility function
over state-contingent outcomes or as a utility function over probabilities.

For given consequences {c;,...,c,} and a given von Neumann-Morgenstern
utility function, u, one can treat

n

- u(c)

i=1

as a function of the probability distribution (p,, . . . ,p,). Hence, in this per-
spective, the expected utility representation is a special case of a utility func-
tion on probabilities,

Ulpy...

b @

Figure 1.7 shows indifference curves of this utility function over probabilities
in A3,

Substituting for p, (
difference curve:

- p3), the following formula describes an in-

e k-ulcy) () —ulcy) X
u(es)—u(cy)  ules)—u(ey)
Indifference curves are obviously linear and upward-sloping if
u(c) > u(q) > u(q).
This case has been assumed in the diagram. Furthermore, since changing the

utility level kshifts only the intercept of an indifference curve, leaving the slope
unchanged, indifference curves must be parallel.

1"
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Py

Fig. 1.7

On the other hand, if one interprets the indices i = 1,...,nas states for which
the probability distribution is given, (p;, . . . ,p,), one can view the expected
utility representation as a special case of a utility function ranking state-con-
tingent consumption vectors (¢, . - - ,¢,),

LCRRSED FAPE

Figure 1.8 gives an example for two states (¢, ;).

To obtain the convex shape of the indifference curves, it is assumed that the
von Neumann—Morgenstern utility function u(-) is concave. If they are differ-
entiable as well, one can derive the slope of an indifference curve by implicitly
differentiating the equation of the indifference curve,

pr-ule) +py-u(e) =k
to yield:
dey_ _prid(a)

dg Pz'"'(fz),

where « (-) denotes the derivative of the expected utility index u(-). A special
property of the expected utility representation interpreted as a utility function
over state-contingent outcomes is the fact that the slope of each indifference

12
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Fig. 1.8

curve on the 45° line is always equal to —p,/p,. This is easy to see from the for-
mula for the slope since, on the 45°- line, ¢, = ¢, and therefore u'(¢;) = v'(¢;)
no matter what specific functional form the utility index u may have.

Up to this point it has been assumed that the set of states and outcomes is
finite. This need not be the case. Some probability distributions considered in
finance and economics are characterized by continuous distribution func-
tions. Fortunately, the expected utility approach can be extended to cover this
case. For probability distributions over continuous sets of states or outcomes,
one can no longer assign probabilities to single points.5 Hence, one cannot
form a sum to obtain an expected utility but must integrate the von
Neumann-Morgenstern utility index over states or outcomes. In such cases,
the following notation is used

Jc u(c) gle)de
for probability distributions given by a density function g(c), or
[ wa 6t

for probability distributions given by a distribution function G(c). In both
cases, integration takes place over the set C.

5 For more on the distinction between di d

see Appendix A.

13
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1.4 Stochastic Dominance and Attitudes towards Risk

The general theory of decision-making under uncertainty allows for all kinds
of consequences, such as, personal injury, a particular team winning a contest,
consumption bundles, etc. In financial economics, however, outcomes or con-
sequences are usually amounts of money or levels of wealth. It is in this context
that expected utility theory has proven to be particularly useful because it
allows us to characterize attitudes towards risk in ways which are intuitively
appealing. This case will therefore be given special attention in this section.
Note, however, that the notions of risk attitude introduced here do not extend
easily to more general outcome sets.

In this section, the set of consequences C will be a subset of the real num-
bers, CC R, and probability measures will be either simple (where Cis a finite
set) or represented by distribution functions. In the former case, expected util-
ity can be written as a finite sum:

Up)= 3 u(x)-p,
xeC
where U(-) denotes the expected utility function, u is the expected utility index
(or Von Neumann-Morgenstern utility index), C := {x),...,x,} is the finite set

of consequences, and p = (p,, .. .,p,) is a probability distribution. In the latter
case, expected utility is asani 1

UG = [Lutx) 46,

where G:R — [0,1] isa distribution function representing the probability dis-
tribution over outcomes.

Characterizing intuitive notions of ‘riskiness’ is easier for probability distri-
butions defined over monetary outcomes since it seems natural to assume that
more money is preferred to less. The following example illustrates this point.

Example 1.3. Consider the following lotteries:

o= { 100 with probability 0.5

A~ 1 0with probability 0.5

T = { 100 with probability 1.0

_ [ 250 with probability 0.5

€~ 1 0with probability 0.5

_ { 150 with probability 0.5

D 50 with probability 0.5
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It seems natural to assume that ‘rational’ decision-makers will prefer I'y over
T',and Ccover I, since ['yand I'cyield at least as much or more under all con-
tingencies. Similarly, ', appears to dominate I, because I';; has a higher out-
come in the best and in the worst case than T’ and the best and worst outcomes
occur with the same probability. But what about a comparison of 'gand I'p?
Under some contingencies, I'p, is better than 'y and under others I is better
than I, The expected values of I'g and I'j, are the same, however. One may
interpret a decision-maker’s choice between I'yand I'p as an indication of risk-
aversion or risk-affinity. Similarly, a preference for I' over I'¢ can be inter-
preted as a stronger degree of risk-aversion since the expected value of I'¢ is
higher than 100. Figure 1.9 shows the distribution functions of these lotteries.

Probability

0.5 +=r=r=

100 150 200 250 $
Fig. 1.9 [ ]

Since the definitions and results of the following subsections hold for dis-
crete as well as continuous probability distributions, it is convenient to use a
notation which covers both cases. Continuous probability distributions are
usually given by a distribution function which associates with a number x the
probability that an outcome less than or equal to x occurs. For continuous
probability distributions, one cannot generally assign a probability to each
outcome as one usually does in the case of discrete probability distributions. It
is, however, possible to characterize discrete probability distributions by a

15
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distribution function. For example, the discrete probability distribution
(Pys- - - Py) on the outcomes {x;, . ... ,x,} can be described by the distribution
function

Gy(x) :=Prob{ye Cly<x}= > ps
i€l(x)

where I(x) := {i| x; < x} denotes the set of indices i for which the outcome x;is
less than or equal to x.

Figure 1.9 shows the distribution functions for the four simple probability
distributions of Example 1.3. Notice that distribution functions of discrete
probability distributions are step functions with discontinuous jumps at those
outcomes which have a positive probability. In contrast, continuous probabil-
ity distributions have distribution functions that rise continuously from zero
to one.

It is a useful fact that every right-hand continuous function that increases
monotonically from zero to one can be viewed as a distribution function of
some probability distribution. A second useful property of distribution func-
tions is that the area above a distribution function and below the value G(x) =
1 represents the expected value of the probability distribution. The following
definitions of risk-dominance are cast in terms of distribution functions.

1.4.1 Stochastic dominance

Example 1.3 suggests that a probability distribution F which yields a higher
pay-off under each contingency and/or attaches a higher probability to higher
pay-offs than another probability distribution G should be preferred by a
decision-maker who prefers more to less. The following definition introduces
the notion of first-order stochastic dominance.

DEFINITION 1.1. A probability distribution F dominates another probability
distribution Gaccording to first-order stochastic dominance (FSD) if

F(x) < G(x) forallxe C.

Two examples will help to clarify this definition.

Example 1.4. Consider the distribution functions:

0 ifx<25 0 ifx<2
F(x) ={0.4 if2.5<x<3.5 G(x)={0.5if2<x<3
1 if35<x 1 if3<x

Since F(x) < G(x) for all x, Fdominates G by FSD.

16
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G(x)
....... F(x)
0s —
0.4 -
0 2 25 3 35 *
Fig. 1.10 =

Example 1.5. Consider the following two probability distributions repres-
ented in Figure 1.11:
—exif x> —e2x if x>
I 2 i S

Obviously, F(x) £ G(x) for all xand F dominates G by FSD. [ ]

An expected-utility-maximizing agent who prefers more to less unambigu-
ously prefers first-order stochastically dominant probability distributions.
This property of first-order stochastic dominance is stated formally as:

LemMa 1.1. Fdominates G by FSD if and only if

J, 1) 4P 2 [t a6

for all strictly increasing expected utility indexes u(x).

The lemma implies that it is sufficient to rank any two probability distribu-
tions by FSD that expected-utility-maximizing agents with strictly increasing
utility indexes are unanimous in preferring one of the two distributions.
Unfortunately, this is rarely the case. As Example 1.3 shows, individuals who
prefer more to less may nevertheless differ in their attitudes to risk. As a result,
FSD is unable to provide a complete ordering of probability distributions.

A more refined ordering can be achieved by ranking distributions with the
same or higher expected values according to a measure of their dispersion or
spread. The following definition introduces the notion of second-order
stochastic dominance.

17
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Probability

0 x
Fig. 1.11
DEFINITION 1.2. A probability distribution Fdominates another probability
distribution G ding to second-order stochastic domi; (SSD) if, for
allxeC:
x x
[_rndy<]_coay.

This definition requires the dominant distribution to have a smaller area be-
neath the distribution function for any x € C. Once again, two examples will
help to clarify the definition.

Example 1.6. Consider the following distribution functions:

0 if x<10 0 if x<5
F(x) = G(x)={0.5 if 5<x<15.
1if 10<x 1 if 155x

Note that F(x) < G(x) for x€ [5,10) and F(x) > G(x) for xe [10,15). Figure
1.12 depicts the two distribution functions.

From the figure it is clear that the area below Fis smaller than the area under
Gforall x < 15 and for x 2 15 the areas are equal. []

18
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Probability
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Fig. 1.12

Example 1.7. Let the two distribution functions be as follows:

0 if x<1 0 if x<0
F(x)='(x—1) if 1<x<2, G(x):i’;‘ if 0<x<3.
1 if 2<x 1 if 3<x

Figure 1.13 illustrates these distribution functions. Comparing the areas be-
neath the respective distribution functionsup to any point x, it is clear that the
condition for Fto dominate G by SSD is satisfied. [ ]

As in the case of first-order stochastic dominance, there is a relationship be-
tween thre expected utilities of two distributions which is both necessary and
sufficient for one to dominate the other by SSD.

LEMMA 1.2. F dominates G by second-order stochastic dominance if and
only if

Joun a0 > [ uo dta
for all increasingand concave expected utility indexes u(x).

LeMMA 1.2 implies that it is sufficient to rank any two probability distribu-
tions by SSD that expected-utility-maximizing agents with increasingand con-
cave expected utility indexes are unanimous in preferring one of the two

19
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Probability

Fig. 1.13

distributions. There will be a greater degree of unanimity amongst agents in
this class than amongst the broader class whose expected utility indexes are
strictly increasing only.

In general, the more narrowly one defines the characteristics of the expected
utility index, the greater the degree of unanimity amongst the agents in that
class and the more complete the ordering of probability distributions. Third,
fourth, and higher orders of stochastic dominance have been suggested as ways
of progressively refining and completing the ordering of distributions. The
difficulty is that the set of agents whose expected utility indexes satisfy the in-
creasingly more proscriptive conditions becomes an ever smaller subset of the
universe of economic agents. The ordering of distributions can only be made
more complete by narrowing the range of opinion considered.

1.4.2 Curvature of the expected utility index and
attitudes to risk

Two probability distributions with the same expected value which can be
ranked by second-order stochastic dominance will be distinguished by the
‘weight’ of the probability mass in the tails of their density functions. The SSD-
dominant distribution will have less mass in its tails, i.e. will be more concen-
trated about the mean or less dispersed than the distribution it dominates.

20
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Since dispersion of a distribution about its mean is one measure of risk,
second-order dominance can be used to rank distributions with equal means
according to their riskiness. Moreover, the link between SSD and the strict con-
cavity of the expected utility index implies that the curvature of the expected
utility index is related to an individual’s attitude to risk.

Two questions can be asked of a decision-maker to reveal his attitude to risk:

o would he prefer to receive the expected value of a lottery with certainty
than to receive the lottery itself?
 what sum would he be willing to pay to avoid the risk involved in alottery?

The following definition i d two pts which correspond to the an-
swers to these questions.

DEFINITION 1.3. The certainty equivalent of a probability distribution Fis
the real number c¢(F) which satisfies:

WelP) = [ u(x) dFx) = U(.
The risk premium is the real number g(F) which satisfies:

q(F) = u(F) - «F),

where u(F) := JC x dF(x) denotes the expected value of the distribution F.

The certainty eq a decisio ker’s willingness to pay for
alottery. The risk premium is simply the difference between the expected value
of alottery and its certainty equivalent. If a decision-maker is prepared to pay
more for a probability distribution than the expected value of it, then the risk
involved in the probability distribution appears to be valuable for her. Hence,
one feels entitled to call her risk-loving. On the other hand, a decision-maker
who would pay less for a probability distribution than its expected value seems
to require compensation for the risk involved and may therefore be character-
ized as risk-averse. These considerations suggest calling a decision-maker:

rise-averse q(F)>0
‘ risk-neutral if { q(F)=0 l for all probability distributions F.
risk-loving q(F) <0

This characterizes an agent’sattitude to risk according to her willingness to pay
to secure a certain (i.e. riskless) outcome.

A second approach is to characterize an agent’s attitude to risk according to
whether or not she prefers a probability distribution to its expected value. In
this approach, an agent is said to be:

21
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o risk-averse if, for any probability distribution, she prefers the expected
value of the distribution to the distribution itself;

® risk-neutral if, for any probability distribution, she is indifferent between
the expected value of the distribution and the distribution itself; and

o risk-lovingif, for any probability distribution, she prefers the distribution
to its expected value.

It is easy to see that the two characterizations of risk-attitudes are identical.

From Definition 1.3:

u(p(F) - q(F) ) = u(o(F) ) = Ju(x) dF(x) =: U(P).
Since u(x) is strictly increasing, it follows that:
q(F) {210 & u(u(F) {2} U(F),

where 11(F) denotes the expected value of the distribution Fand U(F) is the ex-
pected utility of the distribution F.

The second of these two equivalent characterizations links an agent’s atti-
tude to risk directly to the curvature of his expected utility index u(x). In par-
ticular, an agent is:

risk-averse
[ risk-neutral ] o u(u(F)) (g } UCF)
risk-loving
for all probability distributions F. The necessary and sufficient condition is
equivalent to a statement about the curvature of u(x).

Example 1.8. Consider an arbitrary probability distribution Fthat is concen-
trated on two outcomes x,,x, € C. Then:
W((F)) = ulpy - %+ by %) {2} py - () + py - ulx;) = UCF)

risk-averse

depending upon whether the agent is [ risk-neutral
risk-loving

concave

Now recall that a function u: R — Ris [ linear
convex

if:

uAx + (1=2) ) {2} A+ ux) + (1= A) - u(x)
holds for arbitrary 4,0 <A< 1.
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Substituting A = p, establishes the result that an expected-utility-maximiz-
ing agent is:

risk-averse concave
risk-neutral } if u(x)is { linear }.
risk-loving convex
Figure 1.14 illustrates this result. [ ]

Finally, note that curvature properties are usually local characteristics.
Thus, as shown in Figure 1.15, an agent may be risk-averse with respect to
some gambles and risk-loving with respect to others.

Note that a decision-maker with risk preferences as depicted in Figure 1.15
is risk-loving for gamble Fwhich is concentrated on the outcomes x, and x, but
risk-averse for the lottery Fwhich is concentrated on the outcomes %, and %,.

ux) L2
) ux)
ulu(P))
umn=
ue (P
ux) L
) x o(F) u(F) x x o x oF) u(F) &
Risk-aversion (¢(F) > 0) Risk-neutrality (g(F) = 0)
u(x)
u(xs)
un
ulu(P)
ux)
o o uF) oA x x

Risk-affinity (¢(F) <0)
Fig. 1.14
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)

u(x,)
u(F)
ulu(F)]
u(x,)

0 Y WF) % R u(F) % x
Fig. 1.15

1.4.3 Measures of risk-aversion

Very often the distinction between risk-averse, risk-neutral, and risk-loving
behaviour is too crude for analytical purposes and a more precise measure of
the curvature of the expected utility index is required. If we assume that ex-
pected utility indexes are continuously differentiable and strictly increasing,
we can define the following measures,

Ry (x) :=— Lt ’(x) absolute risk-aversion;
u'(x)
R(x):= ) relative risk-aversion.

u'(x)

The measure of absolute risk-aversion gauges the degree of an individual’s
aversion to gambles of a (small) fixed absolute size. The coefficient of relative
risk-aversion measures the degree of an individual’s aversion to gambles of a
(small) size which is fixed as a proportion of the individual’s initial wealth.

Notice that these measures may vary with the point x € C of evaluation.
Since u'(x) is positive by assumption and u"(x) is positive, negative, or zero
according as u is locally convex, concave, or linear, these measures of risk-
aversion are:

 positive if the agent is risk-averse;
© negative if the agent is risk-loving; and
e zero if the agent is risk-neutral.
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It is easy to check that linear transformations of the expected utility index do
not affect these measures of risk-aversion.

Many comparative-static results depend upon the degree of risk-aversion a
decision-maker possesses. In portfolio choice problems, for example, a
decision-maker’s degree of absolute risk-aversion determines whether or not
he responds to an increase in wealth by increasing his demand for a risky asset.
This problem is examined in Example 1.9.

The following lemma identifies classes of expected utility indexes which
d rate constant, absolute, or relative risk i

LEMMA 1.3. (i) The expected utility index u has constant absolute risk-
aversion of oif it has the following functional form:

= a>0
u(x) = { for .
1—cax a<0
where cis an arbitrary number.
(ii) The expected utility index u has constant relative risk-aversion of € if it has
the following functional form:
(1-g)xi-e el

for

u(x) = .
Inx e=1

This section concludes with an example of an investor choosing a portfolio.
The comparative statics of this approach depend crucially on the measure of
absolute risk-aversion.

Example 1.9. (Portfolio choice). Consider an investor who can buy a risky
asset aor ariskless asset b. Denoting the return from the risky asset in state sby
r,and the return from the riskless asset as R, one obtains the following return
from the portfolio (a,b) in state s:

W(a,b) ca+R-b.

Let the price of the risky asset be g and the price of the riskless asset be the
numeraire. Hence the investor’s budget constraint is given by

q-at+b=W,

where W, denotes the initial wealth of the investor. Assuming perfect markets,
such that short selling of assets is feasible so long as state-dependent wealth
W(a,b) of the portfolio remains positive, the problem can be simplified by
substituting for the riskless asset, b= W, - q - a. Assuming a finite set of states
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§={1,...,S} with probability distribution p = (p,, »Ps), one can write
the optimization problem of an expected utility-maximizing investor in the
following form:

Choose the portfolio (a,b) to maximize

2 p,- u(Wab))
seS

subject to
q-a+b=W,
Substituting the budget constraint b= W, — q - g, this can be re-expressed as
the unconstrained problem:

Choose a to maximize
3 p- u(R- Wyt (r,=R-q) - a).
seS
The first-order condition for this problem is
2 p, (R W+ (,-R-q)-a)- [r,—R-q] =0,
se

where u'(-) denotes the first derivative of u(-). If the investor is risk-averse, i.e.
u"(-), the second derivative of u(-), is strictly negative, then the second-order
condition is

Zsp,-u"(k- W,+ (r,—R-q)-a)-[r,-R-gJ2<0.
se

A solution to the first-order condition must therefore be a maximum if the in-
vestor is risk-averse. This will be d for ther inder of the pl
The optimal choice of the risky asset characterized by the first-order condi-
tion depends on the rates of return, r;and R, the asset price g, and initial wealth
W, Of particular interest is the question of whether the demand for the risky
asset is increasing or decreasing in initial wealth, i.e. whether investors with a
higher initial wealth level demand more or less of the risky asset. The following
lemma provides the answer to this question. Suppressing all arguments except
initial wealth, W,, one can write the demand function for the risky assetas a’ =
a(W,). Letting @'(-) and R,'(-) denote the first derivatives of the demand func-
tion a(-) and the absolute risk-aversion function R,(-), respectively, we have:

LEMMA 1.4.
a(W,) > 0if Ry(x) <0,
a(W,) = 0if Ry(x) =0,
a(W,) <0if Ry(x) > 0.
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PROOF. Since the demand function a(W,) is the optimal solution to the
portfolio choice problem, it must satisfy the first-order condition:
Zp (R Wot (r,—R-q)-a(W,))- [r,~R-g] = 0.
Differentiating this identity with respect to W,, one obtains
E,Sp,~ W'(R- W, + (r,—R-q)-a(W,))-[r,—R-q]-R
+ E,Sp,- u"(R- W, + (r,=R-q) - a(W,) ) - [r,— R q]2- a'(W,) =0.

Solving for a'(W,), one has
W) == Z 00 w'(R- Wt (= R-q)- W) - [~ R- g
R- L‘Z‘s"" W'(R- W,+ (r,-R-q)-a(W,))- [r,—R~q]].

If the investor is risk-averse, u"(-) < 0 and
[Zp. (R Wt (= R- ) (W) [r,~ R )]
ses

is negative. The sign of a'(W,) must therefore be the same as the sign of
[2817,- W'(R- W+ (r,~R-q) - a(W,) ) - [r,~ R~ q]] (L)
se
Since [r,— R - q) is positive for some states and negative for others, the sign of

the expression (1.1) cannot be determined without further assumptions.
Recall the definition of the degree of absolute risk-aversion,

u'(x)

uw'(x)

Substituting for u"(x) = — R,(x) - u'(x) and rearranging terms, one can trans-

form (1.1) to yield

= T R Wot (=R a(Wo)) - [1,=R-g] - R(R" W,

+(r,—R-q) - a(W,)). (12)

Now note that, forallse S,

[r,=R-q)- R(R- W) Z,[r,~ R+ ql - R(R W, + (r,— R- ) - a(W,)) (1.3)

if and only if R)(x) § 0 holds.

Figure 1.16 illustrates inequality (1.3) for the case of decreasing absolute
risk-aversion, Ri(x) < 0. In this case,

[re=R-ql - Ry(R- Wo) > [r,—R-q] - R(R-W.+ (r,—R-q) - a(W,)) ()

/m*}m‘iimiﬁii

R(x) =
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must hold because,
for [r,—R-q] >0,R- W,+ (r,—R-q)-a(W,) >R- W,
and by decreasing absolute risk-aversion

R(R-W,)>R,(R-W,+ (r,—R-q)-a(W,)), (b)
and
for [r,—R-q) <O,R- W,+ (r,—R-q)-a(W,) <R-W,,

and by decreasing absolute risk-aversion
R(R-W,) <R,(R-W,+ (r,—R-q)-a(W,)). (0

Figure 1.16 illustrates this argument. The inequality (a) follows from multi-
plying the inequalities (b) and (c) by [r,— R - ] which is positive for (b) and
negative for (c).

Using 1.3, equation (1.2) therefore satisfies the following inequality,

-Zp, (R W,+(r,~R-q)-a(W,)) - [r,—R-q] - R(R- W,
+(r,—R-q)-a(W,))

2 RAR-Wo) [ T py (R Wyt (5= R- )+ a(W) - [r,= R+ ql] =0,

R,

RARWo+(r-Rq)a(W,))

RR-W,)
RRW,+(r-Rg)a(W,)
Ry(x)
T w1 .
RWot(r-Rq)a(Wo) RWot(r-Rg)a(W,)
(rrRq) <0< (rsRq)

Fig. 1.16
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where the expression in square brackets equals zero by the first-order condi-
tion. This completes the proof of the lemma. L]

1.5 Mean-Variance Analysis: A Special Case of
the Expected Utility Approach

In this section, we deal with economic agents whose preferences over proba-
bility distributions can be represented by a function of the mean and the vari-
ance of these probability distributions alone. This is known as mean-variance
analysis.

In Section 1.3, we demonstrated that, under the usual assumptions on pref-
erences (completeness, transitivity, and continuity), it is possible to represent
these preferences by a utility function over the set of probability distributions.
In this section, as in the previous one, only probability distributions over
wealth will be considered.

It is a general result from probability theory that any probability distribu-
tion can be completely characterized by all of its statistical moments. Thus the
utility of an agent can be construed as depending on the moments of the prob-
ability distributions. A restrictive version of this approach is to consider repre-
sentations that depend only on the first two statistical moments (i.e. mean and
variance) of distributions. Even more restrictive is to impose the indepen-
dence assumption in addition, so that one considers only preferences that can
be represented by an expected utility function and that depend only on mean
and variance. This section investigates conditions which, in the context of the
expected utility approach, lead to a utility function that depends exclusively on
the mean and variance of probability distributions.

Throughout this section, we consider (discrete or continuous) probability
distributions over wealth that are characterized by their distribution func-
tions. For any distribution function P, denote by

Mu(P) = | WdP(W), the expected value or mean of P,
02(P):= [ [W - u(P))2 dP(W), the variance of P, and
o(P) :=(0%(P)), the standard deviation of P.

How can a utility function V(y,0), which depends only on the first two mo-
ments of a probability distribution, be justified in terms of expected utility the-
ory? There are two possible explanations: one involves placing restrictions on
the probability distribution P; the other involves placing restrictions on the ex-
pected utility function u(-) (the function defined on consequences).
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To investigate this question, consider an expected utility function defined
on wealth levels «( W) and a wealth distribution function P. One can show that
any distribution function is characterized by its statistical moments. We write
P(- | M) to indicate that the distribution function Pis determined by M, where
M s the set of moments of the distribution. For the expected utility of a prob-
ability distribution, we have therefore in general:

V(M) = UPC- | M) ) = [u(W) dP(W I M),

i.e. expected utility is a function of all of the distribution P.

If a distribution is completely described by its first two moments (u,0), the
expected utility function based upon this distribution will also be a function of
these two moments, and these two moments only. Thus one way to use ex-
pected utility theory to obtain a preference function on mean and variance is
to restrict the set of possible probability distributions to those which depend
upon their first two moments only.

Unfortunately, the normal distribution is the only (stable) distribution
which is fully characterized by its first two moments. The support of the nor-
mal distribution is the entire real line, however, and this makes it unsuitable for
many economic applications. Moreover, since expected utility must be
bounded, an additional constraint must be imposed on the expected utility
index u, namely u(W) < & eB%2, for some o, > 0.

A second possibility, which places no constraints on the distribution func-
tion P, is to require u(W) to be quadratic. Suppose u(W) has the following
form:

u(W)=aw2+ W, ae R.
Then, for arbitrary P, we have:
Ju(W) dP(W) = a- [W2dP(W) + [WdP(W) = a - [62(P) + u(P)?] + p(P).
To obtain the expression in the square brackets, notice that:
o2 = [(W=p)2dP(W) = [ [W2 = 2uW + u2] dP(W)

=[W2dP(W) -2 u- [WdP(W) + u2

=[w2dP(W) - 2,
where o2 rather than 02(P) and  rather than p(P) have been used for nota-
tional ease.

Thus, for a quadratic expected utility index u( W), the expected utility func-
tion depends exclusively upon the mean and variance of arbitrary distribu-
tions. No higher moments appear as arguments. Figure 1.17 graphs the
quadratic utility function for different values of a. From the diagram it is
clear that & > 0 implies risk-loving behaviour, & = 0 risk-neutrality,and ot < 0

30



Decision-Making under Uncertainty

risk-aversion. Note that when & < 0, u(W) is decreasing in W for W > -1/2a..
This property of the quadratic utility function is inconvenient since it violates
the axiom of non-satiation. The function can be applied, however, where the
distribution is concentrated on some bounded interval [0,A] where A < -1/2a
and ais sufficiently small in absolute value.

W) W)
as°
0
a>0 v g aml L
WM =aW+w
ww)
o
a<o v
wW)=aW+w
Fig. 1.17

A further property of a quadratic utility function is that for & < 0 it demon-
strates increasing absolute risk-aversion. To see this, note that

} 4a?
R(W) = and therefore R' (W) = 2 >0.

2a
(2aw+1) Qaw+1
As we saw in Example 1.9 in Section 1.4, this implies that the risky asset is an
inferior good, a result which appears implausible.
The following example illustrates the most common application of the
mean-variance approach. The portfolio choice problem with two assets is a
special case of the more general approach studied in Chapter 2.
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Example 1.10. Consider an investor who must choose a portfolio (a,b) con-
sisting of quantities of a riskless bond, b, which has a constant return of R,
and a risky asset, a, which yields a random return of r. Different returns of the
risky asset coincide here with states of the world. The return on the portfolio
(a,b) is:

R-b+r-a,

where ris assumed to be distributed according to some distribution function
F(r). Assuming further that the investor has a given amount of wealth, W, to
spend on asset a and the bond b, she faces the following budget constraint:
q-a+ b= W, where q is the price of the risky asset and the riskless bond
serves as numeraire. For each level of the risky asset, a, the budget constraint
determines the iated level of bond holdi b= W, - q- a.Note that we
do not require asset levels to be non-negative. Thus, for large levels of a, b
might be negative. This represents the case where the investor sells the bond
short, i.e. issues the bond instead of buying it from some other agent. In reality,
there may be restrictions on such behaviour but these are ignored here.

Substituting for b, one can express the return of the portfolio as a function
of the choice of aalone:

W(ar)=R-W,+(r-R-q)-a.

Note that the choice of a portfolio a corresponds to the choice of a probability
distribution of portfolio returns given by (W(a;r), F(r) ).

For any choice of a, one can calculate the mean of the induced distribution
over wealth W(a;r) as:

Hifa,F) =] Wian) dF(r) = R- W, + (u(A)~R-9) - a
and its variance as:

olfa,F) :=[(W(&r) - plaF) )2 dF(r)
=[(R-W,+(r-R-q)-a=R- W,— ((F)-R- q) - a)*dF(r)
= (r—p(F) )2+ @ dF(r) = a? - 6%(F),
where u(F) and 62(F) denote the mean and variance of the return to the risky
asset, respectively. This yields two equations relating the mean y(a,F) and
standard deviation 0\{a,F) to the portfolio choice a:

Uwla,F)=R- W,+ (u(F)-R- q) - a and owl(a,F)==*a-o(F).

Omitting the arguments of these functions and writing u,y for the portfolio
mean and oy, for the portfolio standard deviation, and u and o for the mean
and standard deviation of F(r) respectively, one can express the budget con-
straint as a relationship between the portfolio mean and portfolio standard
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deviation. Eliminating a, we have a relationship between f1;,and 6y, which de-
pends upon (14,0), i.e. the mean and variance of the distribution F(r), only:

LR
Hw=R-W % p I

* Ow-

Note that, for every combination (1y,0y), there is exactly one g, i.e. one and
only one portfolio. Choosing a portfolio a is therefore equivalent to choosing
a combination (uy,0}y) of desired mean and variance of portfolio return.
Figure 1.18 shows the set of feasible combinations of (iy,0y) for the case
where the average return on the risky asset exceeds the return on the secure
asset.

Hw

Ow
H>R-q

Fig. 1.18

Given the feasible combinations of (1y,0yy), as represented in these dia-
grams, one needs only a utility function that depends on (ty,0y) in order to
describe portfolio choice. For such a utility function simple considerations
suggest the following shapes (Figure 1.19):

o a risk-averse investor requires higher and higher expected return to com-
pensate for increased risk as measured by the standard deviation of port-
folio returns, i.e. indifference curves must be upward-sloping;

o arisk-neutralinvestor is indifferent to oyyand ranks according to i1,y only;
his indifference curves will be parallel to the oy,~axis;

e arisk-lovinginvestor is willing to sacrifice more and more expected return
to obtain an increase in risk; thus her indifference curves will be down-
ward-sloping.
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Hw %
0 ow 0 ow
Risk-averse Risk-neutral
%

Risk-loving

Fig. 1.19

Since the investor is assumed to be always better off with a higher portfolio
mean for a given standard deviation, she will always choose a portfolio cor-
responding to a (14,,,01y) combination on the upper branch of the budget con-
straint. The portfolio choice problem of an investor with mean-variance

preferences will be further investigated in Chapter 2.

In summary, application of the (1,0) approach requires restrictions to be
placed either on the probability distributions considered or on the expected
utility index. Nevertheless, because of its intuitive appeal, mean-variance
analysis is still widely used as an approach to decision-making under un-

certainty, especially in finance and investment theory.
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APPENDIX A
Probability Distributions

Probability distributions (on states and consequences) play a major role in de-
cision-making under uncertainty. This appendix provides a review of concepts
from probability theory which are useful in this context.

The basic concept in probability theory is not a single state of the world but
an event. This is because, in many applications, states are described by real
numbers and not integers. For example, a state of the world relevant to some
problem might be the temperature in a city. If one wanted to associate with
each real number a probability, i.e. a positive real number smaller than one,
these numbers would sum to infinity, even if one were to count temperatures
between 5 and 6 degrees only. Fortunately, it is not necessary to distinguish
that finely. One can assign a probability of zero to an individual state, say 5.7
degrees, but a positive probability to an event, like the temperature being be-
tween 5and 6 degrees.

In general, an event E is a subset of the set of states of the world S,i.e. EC S.
To guarantee that one can assign consistent probabilities to all events, i.e. prob-
abilities which sum to one over the set of all possible states and whose sum
does not exceed one when assigned to mutually exclusive events, it is necessary
to consider only subsets which are well behaved, like intervals and single points
and unions and intersections of such sets. These well-behaved sets are called
events or measurable setsand the set of these events S'is called a sigma-algebra.

Given a set of states of the world Sand an associated set of appropriate sub-
sets S, a sigma-algebra, it is possible to define a probability measure on Sby
associating with each event Ein S the probability of this event G(E).

DEFINITION A.1. A probability measure is a mapping 6: S — R, with the
following properties:

(i) o(E)20forallEes;
(ii) o(S) =1l;and
(iii) if Fjesfori=123,....and FNFj=0
for all i,j (i # ), then c(_ﬁ')lF,-] =5 o(F).
= i=l

Atriple (S, S, 0) is called a probability space. It is usually possible to associate
many probability measures 6, p, /1,... with the same sigma-algebra.
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In most economu: apphcancns, only two types of sets of states of the world
are d: finite-state spaces and real ber spaces. These
are considered briefly in turn.

If the set of states of the world S is finite, i.e. has only a finite number of
states, the appropriate set of events S is the set of all subsets of S. In this case,
any function which associates with each state s € Sa number between zero and
one such that the sum of these numbers equals unity is a probability measure.
Probability measures with a finite set Sare sometimes called simple probability
measures. A convenient feature of simple probability measures is that one need
only list the probabilities of the single point sets in order to describe them
completely. Thus if the set of states S has n elements, i.e. S= {s}, 5, 53, . ..5,},
any vector p = (py,p2,P3 - - - »p,) €A” can be viewed as a probability measure,
where A" = {pe R IX]p; = 1} denotes the (n— 1) dimensional unit simplexé
of R". A"is the set of all probability measures on 7 states of the world.

Example Al. Let rain s, and sunshine s, be the relevant states of the world.
Then:

S={s,5} set of states of the world
={o,{si}, {2}, S} set of events (sigma-algebra)
o(e)=0;0({s)}) = %; probability measure

olish =% 0(8)=1
Thus (S, S, 0) as given above is a probability space. There are of course many

more probability which canbe iated with the same set of events
S,e.g.forany e [0,1]:
p(0) =0;p({s}) = a; p{sh) = 1 - a3 p(8) = 1. =

Examp]eAZ Let the outcome of the toss of a coin be the relevant state of the
world, i.e. 5, = ‘head’; s, = ‘tail’ If the coin is fair, the associated probability
space can be described formally as follows:

S {s1, 55} set of states of the world
= {0, {5}, {5}, S} set of events (sigma-algebra)
G(el) =0;0({s;}) = Z; probability measure
ol =3:0(9)=1." .

6 The (- 1) dimensional unit simplex of R is the st of all non-negative vectors of real numbers
with 5 components which sum to unity.
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ple A3. Suppose the of an election is the relevant state of the
world. One of ten candidates will be elected. According to your assessment,
only candidates 3 and 7 have a chance of being elected. Candidate 7 has a
somewhat better chance, say, 70 per cent, of being elected than candidate 3.
Denote the states as: s, = ‘candidate 1 is elected’; s, = ‘candidate 2 is elected’;
and so on up to s,y = ‘candidate 10 is elected’. The associated probability space
would look like this:

S={s1,5...»80} set of states of the world
S = {all subsets of S} set of events (sigma-algebra)
0 if ¢E and s;¢ E

_]03 if 5€ E and s5;¢ E e
o(E) = 07 if ¢ E and s, E Probability measure
1 if ;€ E and s,€ E [ ]

If the state space S is an interval of the real line, e.g. (— oo, ), (— 2,10}, [1,2],
[0, o), then the set of open intervals in S together with their complements
form the natural set of events S. This is known as the Borel sigma-algebra. In
such cases, positive numbers must be associated with events such that the inte-
gral over the whole space S equals unity.

Example A4. Suppose that the relevant state space is the range of temper-
atures from 0 to 25 degrees Celsius. In this case, events are subintervals or
points between 0 and 25 degrees. Suppose the decisi ki iders each
state equally likely. This can be represented formally as follows:

S$=10,25] state space
S = {any interval and its complement in [0,25]} set of events
(=
o((@h) = o(lah) = o((@bl) = o(la b)) = =2,
forany a, bwith0 < a< b<25. probability measure

Note that the probability of a single point, say 3 degrees, {3} = [3,3], is zero
since 0({3}) = (3 - 3)/25 = 0, and the probability of the whole state space
[0,25] is unity since 0°([0,25]) = (25 - 0)/25 = 1. This probability measure is
called the uniform distribution. [ ]

Instead of writing &((a,b)) for the probability that a state between aand b
occurs, one can define a probability measure in such cases by specifying only the
intervals from zero to some upper level, e.g. 5([0,a) ). The measure o((a, b))
can now be written as 3([0,b)) - ([0,a) ). To simplify notation, one can write
G(a) for o([0,a)) since it suffices to indicate the upper end of the interval
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[0,a). The function G(a) is called the distribution function and is equivalent to
the measure o.

ple A5 (Exp ial distributi Consider the following distribution
function (for & > 0):
l1-eax forx20

G = 0 forx<0.

The probability space defined by this distribution function can be described
formally as follows:

S=R state space
S = {any interval and its complement} sigma-algebra
o( (a,b)) = G(b) - Gla),
forany a,bwitha < b. probability measure

Note that 6(R) = LimG(x) - xli'ry_G(x) =1-0 =1, i.e. the probability of
the state space (all real numbers) is unity as required by the definition of a
probability measure. In addition, for any interval (a, b), it is true that of (a, b)
) 2 0. Finally, consider the two intervals (0,1) and [1,4):

a((0,1)U[1,4) ) = G(1) - G(0) + G(4) - G(1)
=(1-ea) —(1-¢€% + (1 —ee) (1 -e?) =(1-e4a)20.

Clearly, for a single point, such as the degenerate interval [, a]:
o( (a,a) )= G(a)- G(a) = 0.

Once again, this is a probability measure where a single point has ‘measure
5
zero. L]

Example A6 (Normal distribution). The following distribution function de-
scribes the familiar normal distribution where o represents the standard devi-
ation and f3 the mean of the distribution:

G(x) = j: (@ 2m)" - e-rna? dy,

The probability space defined by this distribution function can be described
formally as follows:

S=R state space
S = {any interval and its complement} sigma-algebra
o((a,b)) = G(b) - G(a),

forany a, bwitha< b. probability measure
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It is easy to check that a single point has measure zero and that an interval
(a, b) has measure:

o((@b)) = [ (a-N2my1 - e0-B¥y 2 dy. .

It is occasionally useful to consider a state space S which contains subsets
with measure zero. In such cases, the state space itself is not the smallest set of
states with probability one. The support (or sometimes, carrier) of a measure,
denoted supp(-), is the smallest (closed) subset of S with measure one. In
Example A.4, the support of & was [0,25], the state space itself; while, in
Example A.5, the support of o was R, a strict subset of the state space.

The discussion of the two views of decision-making under uncertainty in
Section 1.2 illustrates that a probability measure on one set can induce,
through a function, a probability measure on another set. Thus the probability
measure on the states of the world, together with a function which associates a
particular outcome with each state, leads to a probability measure on the out-
comes. In general, not every function from states to outcomes is suitable as a
device to induce a probability distribution on outcomes. Basically, one must
take care that the range of the function is a space with a sigma-algebra and that
the function is measurable, i.e. maps in an appropriate way. Measurability is,
however, a weak requirement. In fact, most functions that one encounters are
measurable. In particular, all continuous functions and all step functions are
measurable.

Formally, let f: S — B be a measurable function, B be an interval of real
numbers, and (S, S, 6) be a measure space. In this case, all the subintervals of B
and their complements constitute the set of events ®, i.e. the sigma-algebra
of B. The following measure % induced by fon B, makes (B,#,7) a measure
space:

YK) :=o({se S| f(s) € K})forallKe B.

This simply says that the probability of an element b € Bbeing in K accord-
ing to the probability measure yequals the probability of a state s S occur-
ring for which the functional value f(s) lies in K. For this definition to make
sense, theset {se€ S| f(s) € K} mustbean elementof S, i.e.an event,since only
events have probability values associated with them. If a function is measur-
able, all sets of the type {s€ S| f(s) € K} will be events for S provided K is an
event for B.

Sometimes it is necessary to combine two or more probability measures to
form a new probability measure, e.g. if someone decides according to the toss
of a coin whether to play one lottery or another.
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Example A7. Consider the following two gambles:

gamble 1: pay $2 for a 50 per cent chance of winning $5;
gamble 2: pay $10 for a 25 per cent chance of winning $100.

Formally, one can write:

_ | 3 withprobability of 0.5

gamble 1 = [ 2 with probability of 0.5,
amble 2 = { 90 with probability of 0.25
8 ~ [ -10 with probability of 0.75.

Should the decision-maker decide to play each of these gambles with proba-
bility 0.5 (toss a coin), she would face the following compound gamble:

win $90 with probability 0.5 - 0.25 = 0.125,

win$ 3 with probability 0.5-0.5 =0.25,

lose $ 2 with probability 0.5 0.5 =0.25,

lose $10 with probability 0.5 - 0.75 = 0.375.

Or formally:

90 with probability 0.125

_ 3 with probability 0.25,

gamble 3 = -2 with probability 0.25
—10 with probability 0.375

Note that the outcome set of the compound gamble 3 is the union of the out-
come sets of gambles 1 and 2. One could have written gambles 1 and 2 in terms
of the outcome set of gamble 3 as follows:

90 with probability 0
_ | 3 with probability 0.5,
gamble 1= -2 with probability 0.5
—10 with probability 0

90 with probability 0.25
with probability 0.
with probability 0
—10 with probability 0.75

In general, the set of outcomes in a probability space can be made larger by as-
signing probability zero to the ‘new’ events, i.e. the support of a probability
measure need not be the same as the set of basic outcomes. Naturally, some
outcomes will be assigned zero probability if this is the case.

The following procedure allows one to construct the appropriate state space
for a compound probability distribution.

w

gamble2=1
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Consider two probability measures with finite support (S,,5),0,) and
(52,52,0,). Let S, 1= S, U §, and let S, be the sigma-algebra of S,,. One can
then write (S,5),0,) and (S, 5,,0,) equivalently as (8,5, S5, 6;) and (5,2, 52,
G,), respectively, where:

5(5) .= | OL8) ifseS; fori=1,2.
i) - {0 otherwise

Then any & € (0,1] defines a new probability measure 5on S,, as follows:
0Ox(s):=8-G(s) + (1-8) - Gy(s) forallseS,,

Example A.7 is an illustration of this procedure. [ ]
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APPENDIX B:
Expected Utility Theory

In Section 1.3, it was claimed that four axioms imply the expected utility rep-
resentation of preferences over probability distributions. This appendix fo-
cuses on the most important of these ptions, viz. the independence
axiom. It is shown that, together with the usual assumptions of completeness,
transitivity, and continuity, independence implies the existence of an expected
utility representation. In addition, some properties of the expected utility rep-
resentation and some criticisms of the independence axiom are discussed.

To simplify the exposition, attention is restricted in this appendix to prob-
ability distributions over a finite number of consequences {c,, . . .. ,c,} which
are given by vectors in the (7 — 1)-dimensional simplex

Ani={pe R! X p;=1}.
i=1

With appropriate modifications, the results derived for this special case apply
to preference orderings over more general probability distributions.

B1 Assumptions on Preferences

Assume that a decision-maker’s preferences order probability distributions p,
q € A" such that any two probability distributions are either equally good for
the decision-maker or one is better than the other. An important question con-
cerns the possibility of assigning a utility index number to each probability
distribution, U(p) and U(g), so that
o the two probability distributions are assigned the same number if and
only if they are equivalent in the eyes of the decision-maker, U(p) = U(g),

and
 two different bers are assigned if the decision-maker prefers one dis-

8
tribution, say p, over the other, U(p) > U(q).
It is well known that the following three assumptions guarantee the exist-
ence of a representation of preferences by a continuous utility function:”

7 Debreu (1959, 55-9) proves this result. Varian (1992, 111-15) provides a simpler proof under the
additional assumption of monotonicity.
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(i) Completenessrequires the ordering to order any pair of probability dis-
tributions in A",

(ii) Transitivity is a consistency requirement implying that a decision-
maker who prefers p over gand q over rwill prefer p over r.

(iii) Continuity guarantees that preferences for probability distributions do
not change abruptly, i.e. a continuous transformation of a probability
distribution p into another probability distribution g, that is strictly
preferred to p, should in the course of transformation lead to a prob-
ability distribution that is indifferent to any probability distribution
ranked between pand q.

From these assumptions one can deduce the following result.

PROPOSITION B1. If a preference ordering over the probability distributions
in A" satisfies completeness, transitivity, and continuity, there exists a utility
function U: A" — R that represents this preference ordering. The utility func-
tion U(-) is unique up to a monotone transformation.

1t follows from this proposition that, for analytical purposes, one can work
equivalently with the utility function U(-) (which is usually easier) or with the
preference relation directly. However, there is no natural interpretation that
one can associate with this representation.

In fact, as the last sentence of the proposition states, there are many equival-
ent utility functions. In particular, one can take any strictly increasing function
fR—> R, eg. flx) = x* or flx) = exp(x), to obtain another equivalent utility
function U(p) := flU(p) ). This is easy to see, since a strictly increasing func-
tion has the property that, for any two numbers xand y, x> y implies f{x) >
fly) and x = y implies f{x) = f(y). Therefore, it must be true for any p, g€ A",
that p has a higher value than gaccording to the utility function U(-) exactly if
it has a higher value according to U(),

U(p) 2 U(q) ifand only if Ulp) := AU(p) ) 2 AU(q) ) =: Uq).

Representing preferences over probability distributions by a utility function
U(-) suffices for the analysis of many situations where one wants to model a
decision-maker facing uncertainty. To derive r i | results in ec
and finance, however, such a representation is often not specific enough. In
particular, the fact that this representation does not analytically separate the
influence of changes in the riskiness (the probabilities) from changes in out-
comes is unfortunate. From Bernoulli (1738) on, the applied literature on de-
cision-making under uncertainty assumed a more specific representation of
preferences over probabilities which distinguishes probabilities and outcomes:

O(P) = él’.“ u(c;).
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This representation evaluates a probability distribution p = (p,, ...,p,) over
outcomes {c;, ...,c,} by forming a weighted average of the utilities u(c;) derived
from the different outcomes using the probabilities as weights, i.e. by comput-
ing the expected utility. Von Neumann and Morgenstern (1944) discovered
that only one further assumption is necessary to represent preferences over
probability distributions in the form of expected utility.

Recall that a convex combination of any two probability distributions is
again a probability distribution:

p o\ [ap+1-0)-q
ap+(l-0)-q=a-|. |+U-a)-[. |=]| o,
Pu al \a‘p+1-0)’g,

with p,q € Anand a € (0,1]. The following of the independ

axiom takes as given a preference relation represented by a utility function U(- )

ASSUMPTION B2 (independence axiom). The preference relation on An
represented by the utility function U(-) satisfies, for any p,q,r € A and any
ae(o,1],

Ula-p+(1-0a)-nN2U(a-q+(1-a)-r)ifand onlyif U(p) = U(q).

The independence axiom asserts that the decision-maker ranks probability
distributions solely according to the parts of the distributions that are differ-
ent from each other. The strength of this assumption derives from the fact that
one can decompose any two probability distributions into parts that are ident-
ical and parts that are different. Figure 1.B1 illustrates this assumption for the
case of two outcomes, 1 = 2.

A convex combination (or mixture) of two probability distributions, say p
and r, can be viewed as a compound two-stage random experiment: in stage 1
the probability distributions p and r are selected with probabilities o and
(1- ) respectively. In stage 2,a consequence from the set {¢;,c,} will be chosen
according to the probability distribution selected in stage 1. The induced prob-
ability of outcome ¢;is, of course, & p;+ (1 = @) - r;, i = 1,2.

The independence axiom requires that the decision-maker’s ranking of two
probabilities should be always the same as her ranking of the differing parts of
a compound probability distribution. In‘Figure 1.B1, the ranking of the two-
stage more complex probability distributions should be the same as the rank-
ing of the much simpler distributions pand g.

The logic of this axiom may appear quite intuitive. Experimental studies
have shown, h , that d kers systematically violate the
independence axiom. Before discussing objections to the independence
axiom, the expected utility representation theorem is stated and proved.
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Decision-Making under Uncertainty

THEOREM B3 (expected utility representation). A utility function Uon An
satisfies the independence axiom (Assumption B2) if and only if there is a util-
ity function over outcomes u: C — R such that, for all p,q e A",

U(p) 2 U(q) if and only if i pi-u(c) 2 i q;- u(c).
i=1 i=1

PROOF.8 The proof consists of the following two steps: (i) given Assumption
B2, indifference curves (surfaces) of the utility function U must be linear and
parallel; and (ii) utility functions with linear and parallel indifference curves
(surfaces) can be represented by an expected utility function.

(i) An indifference curve I(U) := {p' € A"l U(p') = U} is linear if, for any
two probability distributions p, g € I(U), a convex combination with any
A €[0,1] lies on the indifference curve,i.e.A- p+ (1= 1) - g€ I(U).

Now, p, q € I(U) implies U(p) = U(q) = U. By Assumption B2, for A & (0,1],

UA-p+(1-2)-9)=UA-q+(1-2)-q) = Ulg) = U
Hence, A - p + (1 - A) - q € I(U), which shows that indifference curves are
linear.

To see that indifference curves are parallel, consider two indifference curves
I(0) and I(U) where U > U Fix an arbitrary probability distribution r such
that U(r) < U. Note that two (linear) indifference curves are parallel if for
arbnrary pgel( U), thereisa umque v€(0,1] such that U(y-p+(1-p - 1) =
Uand U(y- q+ (1-7) - r) = U holds. Figure 1.B2 illustrates this fact for the
case of A.

I

rp+(-pr

rar-pr
Fig. 1.82

8 The idea for this proof was drawn from lecture notes by Jerry Green and Andreu Mas-Collel
communicated to us by Simon Grant. These lecture notes are now published in Mas-Collel,
‘Whinston, and Green (1995).
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Consider two arbitrary probability distributions p, g € I(U) and assume
that, for L€ [0,1], U(A- p+ (1 = A) - r) = U holds. By Assumption B2, for the
same A,

UA-q+(1=A)-N=UA-p+(1-1)-n=0
follows, because U(p) = U(q) = U. Hence, A - p+ (1 = 1) - re I(U) must be
true, showing that indifference curves are parallel.

(ii) A linear surface in R is defined as the set:

{peR"l ip,-- u; =k}
i=1

for some vector of constants (u,, . ..,u,) and some constant k. Parallel linear
surfaces are given by the sets:

{peR"l ip,»- u;=k}
i=1

for k' # k.

Let (uy, .. .,u,) be the vector of constants characterizing the linear indiffer-
ence curves of the utility function U.

For any p € A", define:

U(p) = __Z}p,'- ;.

This utility function generates the same family of indifference curves as U(-)
and therefore represents the same preferences as U(-). Setting
u(e)=u; i=1,...,n

completes the proof. []

The proof uses the fact that preferences are described by indifference curves.
The independence axiom is equivalent to the assumption that indifference
curves are linear and parallel. The representation theorem follows directly
from the fact that linear functions have linear and parallel indifference curves.
Note, however, that there are non-linear utility functions with linear and par-
allel indifference curves. That is why one cannot conclude that the utility func-
tion U(-) which is supposed to describe the preferences in the first place is
linear itself. According to Proposition B1, however, the expected utility func-
tion U(-) must be a monotone transformation of the utility function U(-).

B2 Properties of Expected Utility Indexes

Up to this point no properties of the utility function on consequences, i.e. the
von Neumann-Morgenstern utility index u(-), have been derived. This section
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investigates two important properties of expected utility indexes. The first one
is an immediate consequence of the fact that the common gradient of the in-
difference curves is determined by preferences. The second is of importance
only if more than a finite number of consequences are considered.

B2.1 Uniqueness of expected utility indexes

Unlike expected utility functions, expected utility indexes are unique only up
to a linear affine transformation. Any linear affine transformation of an ex-
pected utility index u(x) represents the underlying preference ordering as well
as the index itself. A linear affine transformation is a function of the type:

v(x)=a+b- u(x)
for some a,b e Rwith b> 0.
As the following example shows, such a transformation affects neither the
slope nor the shape of the indifference curves of the expected utility func-
tion U(+).

Example B1. Consider lotteries with three outcomes {x,, x,, X3} which are val-
ued as u(x,) > u(x,) > u(x;) by the decision-maker. The set of all such lotteries
is A3 where p = (py, py, p3) € A3 are the probabilities of the outcomes x; to x3, re-
spectively. Figure 1.B3 shows all possible vectors p. Note that p, = 1 - p, - ps.

P

Direction of increasing
expected utility

Fig. 1.3
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For different levels of U, indifference curves of the expected utility function

are given by:
U=p, - u(x)) + p, - u(x;) + ps - u(x3)
=pi - [u(x) = u(x)] + ps - [u(xs) = u(x)] + u(xy)

or
_ U- u(x,) _ u(x)) — u(xy) .

ulxy) —ulx) ~ ulx)-ulz)
Since u(x,) > u(x,) > u(x;) these indifference curves are upwgrd-sloping
straight lines which represent increasing levels of expected utility Uas they ap-
proach the point p; = 1.

Now consider the linear affine transformation:

wx)=a+b- u(x).

Indifference curves of the expected utility function derived for this transfor-
mation of the expected utility index are given by the equation:

Ps

V—V(Xz) V(%) = v(x,)

P = ) ) ) - vy B

(V-a)
_ b _ u(x)) — u(x)) .
u(xs)-u(xy)  ulxs)-ulx) *°

—u(xp)

Obviously, the slope and shape of these indifference curves are unchanged;
only the level of expected utility (V - a)/b assigned to each curve has changed
(i.e. the curves have been relabelled). Hence, the same preferences are repres-
ented by the von Neumann—Morgenstern indexes uand v. [ ]

B2.2 Boundedness of expected utility indexes

There is an old puzzle in the theory of decision-making under uncertainty
called the ‘St Petersburg Paradox’. It neatly illustrates the fact that expected
utility indexes must be bounded.

Example B2 (St Petersburg Paradox). Consider the following lottery: A fair
coin is tossed infinitely many times. If ‘heads’ (H) appears after n tosses for the
first time, the prize will be $2". Would a rational person pay $100 to take part
in this lottery?
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The probability that H turns up for the first time after » tosses is just (1/2)".
The expected value of the lottery is therefore infinite:

y::;f; B 2=1r1414 . =en

A co*mparison of the expected value of the lottery with its purchase price sug-
gests that the lottery ought to be accepted. Indeed, this would be true for any
finite purchase price. When people are faced with such a lottery in experi-
mental trials, they refuse to pay more than a finite price (usually low!) to enter.
Recognizing this fact, Bernoulli (1738) proposed a concave function for the
pay-offs. More precisely, he suggested the logarithm as an expected utility
index: u(x) := In x. Clearly,

Z (%) W2 = Z (3)m2i=an2)- z (é) < oo,

i.e. the expected utility of the lottery is finite.

But, as Carl Menger was first to observe, this solution is not robust to a slight
change in the terms of the lottery. Suppose the prize for H after n tosses were
€2". The paradox now reappears even with the concave logarithmic expected
utility index u(x) = In x. In general, if u is unbounded, one can construct a St
Petersburg Paradox.

The St Petersburg Paradox shows that not all strictly increasing functions
are possible as expected utility indexes because the expected utility function
may not be properly defined. Since the expected utility representation theorem
extends to all kinds of probability distributions, it must cover the case of lot-
teries like the one described in the St Petersburg Paradox as well. The repre-
sentation theorem guarantees that there is a well-defined expected utility
function. Hence, neither a linear function (a risk-neutral index) nor a loga-
rithmic function (a particular risk-averse index) can be an appropriate ex-
pected utility index in this case. Indeed, if one includes lotteries of the St
Petersburg type amongst the set of probability distributions, only a bounded
expected utility index will lead to a well-defined, i.e. finite, expected utility
function.

In financial economics and finance theory, it is quite common to encounter
unbounded utility indexes like the logarithmic function, In x, and the expo-
nential function, x2. Why do these functions not give rise to the St Petersburg
Paradox? So long as the set of probability distributions to which the expected
utility function is applied contains only distributions with bounded supports
(which includes finite distributions) or with infinite supports but which are
nevertheless ‘well behaved’ (which includes the normal and alpha distribu-
tions, for example), there will be no problem. Applied to such distributions,
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the expected utility index will be bounded and the St Petersburg Paradox will
not arise.

Example B.3. Fora,b > 0,consider the set of probability distributions defined
on the interval [a, b]. Let u(x) = In x. As Figure 1.B4 shows, the expected
utility index In x is clearly unbounded. The expected utility function is
bounded, however, since the support of the relevant set of probability distribu-
tions is bounded, i.e. u(a) < u(x) < u(b) for all outcomes x.

u(x)

u(b) Inx

u(a)

Fig. 1.B4 L]

B3 Critique of the Independence Axiom

Proposition B1 shows that the independence axiom is a necessary and
sufficient condition for the expected utility representation. Objections to the
independence axiom are therefore necessarily objections to the expected util-
ity approach and vice versa. This fact has been used to design experiments in
order to test whether the behaviour of decision-makers actually conforms
with the expected utility approach. One of the most famous among these tests
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is the experiment by the French economist Maurice Allais. Allais (1952) sug-
gested the following experiment. Consider probability distributions over these
three outcomes (in dollars):

¢ = 5 million, ¢, = 1 million, ¢; = 0.
The probability distributions are as follows:

| probl} proble} probic}

? 0 1 0
q 0.1 0.89 0.01
r 0.1 0 0.9

s 0 0.11 0.89

One can interpret these probability distributions as lotteries and ask sub-
jects in an experiment about their preferences for these lotteries. For example,
p corresponds to the certain outcome of winning 1 million dollars, while gisa
lottery with a 10 per cent chance of winning 5 million dollars, a 89 per cent
chance of winning 1 million, and a 1 per cent chance of winning nothing.
Asked how they would rank lotteries p and g, most subjects of the tests pre-
ferred p over q. Thus, most people did not consider a 10 per cent chance of win-
ning 5 million dollars worth the risk of losing 1 million dollars with a I per cent
probability.

Lottery roffers a 10 per cent chance of winning 5 million and a 90 per cent
chance of winning nothing, while lottery sgives an 11 per cent chance of win-
ning 1 million dollars against a 89 per cent chance of winning nothing. Faced
with these two lotteries, most people preferred lottery r over lottery s. Thus,
they preferred a 10 per cent chance of winning 5 million dollars to the extra 1
per cent chance of losing 1 million dollars.

This observed behaviour is inconsi with the independence axiom. After
all, the difference between the two choices is just an 89 per cent chance of hav-
ing 1 million dollars for pand g, and an 89 per cent chance of having nothing
for rand s. Figure 1.B5 shows these four lotteries.

Figure 1.B5 shows clearly that the line connecting the lotteries p and g is
parallel to the line connecting the lotteries rand s. Indifference curves of util-
ity functions that satisfy the independence axiom are parallel straight lines.
Hence, one of the following must be true for such preferences:

(i) Ulp)>U(g) and U(s)> U(r), or
(ii) U(q)>U(p) and U(r) > U(s), or
(iii) U(p)=U(q) and U(r) = U(s).
The behaviour of the individuals in the experiments thus violates the inde-
pendence axiom by ranking p over q and r over s. Consequently, one cannot

52



Decision-Making under Uncertainty

prob fci}

prob {c3}
Fig. 1.B5

model their preferences by an expected utility function. This is the so-called
Allais Paradox.

There are other experiments showing behaviour that is inconsistent with
the expected utility hypothesis. The literature on alternative models for deci-
sion-making under uncertainty is too large to be reviewed here. The interested
reader will find an excellent survey in Machina (1987a).
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Notes on the Literature

The analysis presented in this chapter draws on classic treatments of choice
under uncertainty by von Neumann and Morgenstern (1944) and Debreu
(1959). While these are the ultimate sources, many other useful discussions of
the same issues are available in a variety of advanced economics textbooks, e.g.
Varian (1992). Machina’s (1987b) entry on ‘Expected Utility Hypothesis’in the
New Palgrave gives an excellent introduction to the expected utility approach
and its axiomatic foundations. Mas-Collel, Whinston, and Green (1995) prove
the expected utility theorem similarly to the proof given in Appendix B.

A more detailed treatment of stochastic dominance is available in Ziemba
and Vickson (1975). The classic work on mean-variance analysis is Markowitz
(1952) but most finance textbooks include at least an introductory discussion
on this topic, e.g. Copeland and Weston (1988). More detail on the mathemat-
ical foundations of probability theory is provided in Feller (1966).
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Exercises

1. Consider three states of the world, S = {s},5,,3}, and three consequences, C=
{o B, A witha, B,yeRand a> B> 7.

(a) Show in a table all conceivable functions £ S — C.

(b) Draw a diagram showing all possible state-contingent outcomes.

(c) Draw a diagram showing the probability distributions on the outcomes
{a, B, ¥} induced by the functions given in the table derived in (a) for the case
where all three states are equally likely.

2. Consider the following lotteries on the outcomes {5, 1,0}:

p=(0.00,1.00,0.00),  q=(0.10,0.89,0.01),
r=(0.10,0.00,090), s=(0.00,0.11,0,89).

(a) Show that there are lotteries on the outcomes {5, 1,0}, say xand y,and a
number & € [0,1] such that
p=a-p+(l-a)-p, q=a-x+(1-0)-p,
r=a-x+(1-0)-y, s=o-p+(l-a)-y.

(b) Show that an agent who satisfies the expected utility hypothesis will rank
these lotteries as follows:

p2gqes2r

3. Consider the expected utility function of a risk-averse decision-maker:
"
> u(x;) - pywithx;€R foralli=1,...n.
i=1
(a) For n = 2 and given p, draw the indifference curves of the expected util-
ity function in a state-contingent outcome diagram.
(b) For n = 3 and given outcomes {x,,x,,X3}, draw the indifference curves of
the expected utility function in a diagram representing the probability distrib-
utions on {x,%,,%;}.

4. Assume that a decision-maker ranks lotteries according to the following mean-
variance functional: V(11,62) = 1+ (10 - 0).

(a) Show that this decision-maker prefers a lottery p which pays 10 with
probability 1 to a lottery q that pays 10 or 20 with probability 1/2.
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(b) Give a definition of first-order stochastic c:lominance and show that q-

dominates p in this sense.
(c) Does an expected utility maximizer respect first-order stochastic"

dominance?
(d) Is the mean-variance approach in general incompatible with the ex-

pected utility approach?

5. Consider the following von Ne Morgenstern utility functions:
u(x) = Ab-x AbeR
ux)=(1-q) K- aeR,a#1
u(x) =Inx
ux)=a-x2+x aeR

(a) Draw diagrams of these functions for different parameter values.

(b) Derive the measures of absolute and relative risk-aversion.

(c) For which parameter values do these functions have decreasing absolute
risk aversion?

6. Consider an investor with the von Ne Morgenstern utility fi
u(x) = x— 0.05 - x2 and an initial wealth of W,,. Suppose that there are two assets,
astock and a bond, for investment. A bond has a price of 1 and returns one unit of
money per unit invested. The stock costs q per unit and returns 2 units of money
under good market conditions and nothing otherwise. The investor assesses the
probability of good market conditions as0.5.

(a) Derive the demand/supply function for the stock under the assumption
of astock price g < 1.

(b) Draw a diagram of the stock demand/supply function. Is the stock a nor-
mal good for this investor? Explain your answer.

(c) Suppose the stock price were equal to or greater than one. Derive the
demand/supply schedule for the bond for this case. What changes if short sales
of the assets are impossible?

7. Reconsider the investor in Question 6.
(a) Show that her expected utility function can be viewed as a mean-variance
utility function and draw the indifference curves of the function in a mean-

variance diagram.
(b) Draw a diagram showing the mean-variance combinations that arise

from portfolios satisfying the budget constraint.
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2

PORTFOLIO CHOICE

The subject of this chapter is the problem of portfolio choice. The chapter begins by
establishing the equivalence of the problem of choosing assets to hold in portfolio
and the problem of choosing state-contingent wealth. The equivalence of these two
problems reveals limits on the relationship between the payoffs and the prices of as-
sets in equilibrium. If trade in asset markets is not to produce unbounded wealth,
asset pay-offs and prices must be such that riskless arbitrage is not possible. The con-
ditions under which this is true are developed in Section 2.1.1. Section 2.1.2 goes on
to investigate general equilibrium in portfolio space.

The later part of the chapter addresses the special case of mean-variance utility.
Portfolio choice in the context of mean-variance utility is perhaps the most familiar
piece of analysis in modern finance theory. An aim in this discussion is to point to the
special assumptions which are. needed to derive these results from the more general
framework provided by financial economics. While not denying the usefulness of
mean-variance analysis, and ultimately the Capital Asset-Pricing Model which
emerges from this approach, we are concerned to point out how these popular results
are subsumed within the broader framework of a general asset-market equilibrium.

2.1 Portfolio Choice

Consider an economy with assets k = 1,...,K. Assets are characterized by the
non-negative pay-offs r,, they generate in different states:

1= (Moo lgo - o5Ts0)-

Consumers can buy or sell assets in unlimited quantities at given positive
prices gy per unit of the asset. Denote by a, the quantity of asset k which a con-
sumer holds or wants to hold. For a; > 0, the consumer holds an entitlement to
receive payments in each state of the world according to the pattern indicated
by the state-contingent pay-off vector r,. For a; < 0, the consumer is obliged to
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make state-contingent payments according to the same pattern. A portfolio
a=(ay,...,a . ..,ax) specifies quantities of the different assets held by a
consumer. Each consumer is endowed with an initial portfolio of assets
= (dgy. . s o »lig)s

As usual in an exchange economy, consumers trade assets freely at given
asset prices q = (qys.-.,p - -»qx)- The value of a consumer’s initial endowment
W,=3K, q;- a,is her initial wealth. Furthermore, associated with each port-
folio a, there is a state-dependent wealth vector:

W(a) = (W(a),...,W(a),...,Ws(a) ),

where W(a)= I, r, - aiis the wealth generated by portfolio ain state s.

A ing that our c is an expected utility imizer, her net de-
mand for the various assets can be derived as the solution to the following op-
timization problem:

S
Max 3 p, u(Wa) )
a s=1
bjectto 3. W,
subjectto 2.q - ag= W,

Note that there are no non-negativity constraints on the choice of assets since

short sales are allowable.
A solution to this optimization problem is an optimal portfolio a* which

will depend upon:

o the prices of assets q;
o the pay-off vectors of all assets
e theinitial asset endowment 4 (or equivalently, the initial wealth W,).

Formally, for k= 1,...,K,

A= il 5 qi5T15 -+ TG - - 5AK)-
Given a set of consumers, i = 1,...,], each endowed with an asset holding
a@i = (aj,...,a}); and each with preferences represented by an expected utility
index i, an equilibrium is an asset price vector

9= (g o~ -»qK)
and an asset allocation
a = (af,...,ak)

for each agent such that, for all asset markets k= 1,...,K:

3 1
_Z]f;"(q,,..‘,qK;r.,...,rK; aj,...,ak) ‘Elﬁ;".
= =
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To illustrate some of the properties of optimal portfolios, we develop the
special case of two assets and two states.

2.1.1 Optimal portfolio choice with two assets and two states

For the two-asset, two-state world, the agent’s choice problem is written for-
mally as follows:

Max p-u(n - a+ iz @) + (1=p) - ulry - ay+ 13- @)
12

subject to (2.1)
Qe+ a=Ww,

Note that the argument of the utility function u() is state-contingent wealth,
i.e. W,(a) = r, - a) + r,, - a,. Note also that there are no restrictions placed
on the values of a, and a, which may be negative, i.e. either asset may be sold
short.

This problem is represented in Figure 2.1. The shape of the indifference
curves depends on the asset return vector since assets affect wealth through
their state-contingent pay-offs.

a

Py, +1yay)+ (1= p)-ulrya, + 1y, ) = @

a
%

Fig. 2.1
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There is an alternative way to represent this problem. Recall that:
r r
W1='n'“1+’12'“z=“l'q|“"|+‘£"h'“z
a 92
and
r. r,
Wy=ry '“l+sz'“z=A'q|'“1+'zl"Iz'“z‘
LA 92

Solving these two equations for 4, and a, and substituting into the budget con-
straint (2.1) yields:

Lo THI>) Tn-ry _Na-ry
@ 9 D9 9%
= W+ - W, (2.1a)
m_rm m_rp
a1 9 D 92
Now (2.1a) is a budget line in state-contingent wealth space (W,, W,), with a

Ta_I»

9 D
slope of ———— and an intercept on the W,-axis of
9 %
LY SRA VRS PRLST}
20 929
P L R LA S 7Y
[
9 92
The portfolio choice problem can therefore be stated equivalently as:

Max p-u(W,) + (1-p) - u(W,)
W, @22)
subjectto  (2.1a).

The representation of the budget constraint (2.1a) in state-contingent
wealth space reveals an important necessary condition for the existence of a
solution to the portfolio choice problem. Note that the slope of the budget line
in (2.1a) depends on the pay-offs rj; and ry (k= 1,2) and the asset prices g,
and g,. Figure 2.2 illustrates the relationship.

If the budget line is upward-sloping, any consumer whose preferences in-
crease in wealth can increase her utility infinitely by consuming even further
along the budget constraint (i.e. proceeding in a north-easterly direction).
This follows from the fact that
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W

Fig.2.2

Ny 2
Q@
_ne
Q92

> 0 implies:

» r r T T
either ~2L>"2 and -1 >-12;
a9 LI

r r r r
or L2 g 2l 712
Q@ D 9 9D
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The first pair of inequalities implies that asset 1 provides a higher pay-off
than asset 2 in both states. Selling a, short and buying a, therefore allows the
consumer to achieve arbitrarily high levels of wealth in each state. Similarly,
the second pair of inequalities shows the state-contingent pay-offs of asset 2
dominating those of asset 1 and again riskless arbitrage is possible.

In short, if the slope of the budget line were positive, it would be possible
simultaneously to sell one asset and buy the other in unbounded quantities, so
as to produce ever-increasing levels of state-contingent wealth and expected
utility, without violating the initial wealth constraint. This possibility is illus-
trated in Example 2.1.

Example 2.1. Suppose that the pay-off matrix for the two assets is given by:

('n N2 _[? 1]
=1z

1 T
and the prices by (4;, ¢,) = (1,1). There is an opportunity for riskless arbitrage
in this case, since asset 1 offers superior pay-offs in both states and yet costs the
same as the riskless asset 2. It should be possible to sell asset 2 short in un-
bounded quantities (i.e. borrow without limit at the riskless rate of interest)
and invest the proceeds in asset 1. Such a portfolio will require no more wealth
than initially endowed, and yet will generate unbounded expected utility.
The equation of the budget line in this example is:

1 1
W2=E~ w, +5~ w,

The slope is clearly positive. Any portfolio (a,, a,) which satisfies a, + a, = W,
and a, > W, will generate higher expected utility than that of endowed wealth
Wo. In fact, 4, can be increased without limit, matched by commensurate re-
ductions in a,, to create unbounded state-contingent wealth and unbounded
expected utility. [ ]

A necessary condition for a well-defined solution to the portfolio choice
problem whether in portfolio space (a,, a,) or state-contingent wealth space
(W), W,) is that

ry_ra
9 9
= < 0holds.
o
9 9

If the budget line is downward-sloping in (W), W,) space (i.e. if no arbitrage
possibilities exist), the portfolio choice yielding (W, W3) is optimal so long as
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the marginal rate of substitution (the slope of an indifference curve of (2.2) )
equals the slope of the budget line (2.1a),i.e.:
fy_I»
p-uwy) _ 4N %
(1p)-w'(Wy) ~ ry _rp”
a9

(2.3)

Since 0 < p < 1and «'(-) > 0, the marginal rate of substitution on the left-hand
side of (2.3) must be negative, and can be equal to the slope of the budget line
on the right-hand side only if it is negative. This confirms the necessity of the
arbitrage condition.

While the basic aim is to solve for the optimal asset demands aj and a3, the
problem can be reduced to one in (W;,W,)-space, where we solve for the op-
timal levels of state-contingent wealth W and W;. There is always a one-to-one
correspondence between the portfolio space (a,, a,) and the state-contingent
wealth space (W,,W,) if the asset return vectors are linearly independent. In
some cases it is more convenient for expository purposes to work in one space
rather than the other. We shall use both at different points in this chapter. For
the present, we solve the portfolio choice problem in (W,, W,)-space, and use
an example to derive the parallel optimum solution in (a, a,)-space.

Example 2.2. Let the pay-off matrix for the two assets be as follows:

l m T2 ] _
2
Asset 1 is clearly riskless, since its pay-off is constant across states. Further-
more, assume that the prices of the two assets are given by (q;,4,) = (1,3/4), the
probabilities of the two states by (p, (1 — p)) = (1/2,1/2), initial wealth is
W, = 1,and that the expected utility index is u(W,) =In W,

From the two first-order conditions (2.3) and (2.1a), we derive the follow-
ing two equations:

1
13

12

W,=5-W, and W,=-5-W,+6-W,

These may be solved simultaneously to reveal the expected-utility-maximizing
vector of state-contingent wealth:

(W, W) =G,3).
While the agent is risk-averse (indicated by the logarithmic utility index), the

ratio of the prices of the two assets differs from the ratio of the probabilities of

65



Symmetric Information: Markets

the two states, and hence the agent chooses a state-contingent wealth com-
bination which lies off the 45°-‘certainty’ line, i.e. the agent chooses to bear risk
in equilibrium.

The optimal portfolio choice implied by this state-contingent wealth com-
bination is obtained by solving for @, and a, in the equations defining W, and
W,. This yields:

=49

(a}, @3
which, it can easily be checked, satisfies the initial wealth constraint given the
prices of the two assets. (Check it now!) [ ]

2.1.2 Exchange equilibrium

The solution to the portfolio choice problem in Section 2.1.1 yields expected-
utility-maximizing values for a, and a,. These will be functions of the asset
pay-offs, r; (s,k = 1,2), the asset prices, g, and g,, and the endowed quantities
of each asset, 4, and 4, (recall that W, = g, - 4, + g, - 4). In an exchange
equilibrium where there is more than a single consumer, the prices of the as-
sets are such that the quantities demanded by each consumer in general equi-
librium equal the total endowed quantities of each asset. In other words, asset
markets clear at the ruling equilibrium asset prices. An example should help to
clarify this point. The example shows the equilibrium price and allocation in
an Edgeworth box in the asset space. Notice that individual endowments can
be negative.

Example 2.3. Consider an economy with two consumers, each with identical

von Neumann—Morgenstern preferences and expected utility indexes given by
u(-) = In(-). Assume that the pay-off matrix for two assets is as follows:

I’n 712]=[1 2 ]
m 1 2
and that the probabilities of the two states are p = (1 — p) = 1/2. The endowed
quantities of each asset held by the two consumers are as follows:
(a}, ab) = (15,5) and (a3, a3) = (-5, 15).

Since the consumers have identical preferences, they each have an expected
utility function given by:
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1 1 1
V(a) = i-ln(ul +3 ay) + 3 In(a, +2- a),

where W, = a, + %<azandWl=a,+2-u2.

The general equilibrium asset allocation between these two consumers can
be depicted in a‘box’ diagram of the familiar Edgeworth—Bowley type. Notice,
however, that the equilibrium is in portfolio space and not in the final con-
sumption or wealth space. Thus, negative quantities of assets can be held in
equilibrium (short sales are permitted) and the ‘box’ need not lie wholly in the
positive orthant of Euclidean space. In fact, the box will not be rectangular, as
in the usual Edgeworth-Bowley case, but rather trapezoidal as depicted in
Figure 2.3.

The boundaries of the box in portfolio space are determined by the inequal-
ities W, > 0 and W, 2 0 in wealth space. These inequalities guarantee that final
wealth, and, q ly, final c ion remain non-negative. In port-
folio space, these inequalities become:

a, + %-nzzo and a;+2-a,20.

When these weak inequalities hold as equalities, they bound the space of feas-
ible asset choices for each consumer.

The dimensions of the box are determined by the initial endowment (as in
the usual Edgeworth-Bowley box) together with the inequalities derived from
the pay-off matrix. The total endowment of the two assets is found by sum-
ming the individual endowments:

A=al+a=10 and A,=a}+a}=20.

The point (10,20) becomes the origin for Consumer 2, as depicted in Fig-
ure 2.3.

The indifference curves for each consumer are hyperbolas which asymptote
to the boundaries of the respective sides of the box. A general equilibrium
occurs where the indifference curves for the two consumers share a com-
mon tangency with a price line through the endowment point marked as E in
Figure 2.3.

In the present example, such a common tangency occurs at the point B in
Figure 2.3. At this point, the marginal rates of substitution for each consumer
are equal to the ratio of asset prices (— 14/13).

In the general equilibrium, the asset demands of each consumer are as
follows:
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(a}, a3}) = (6.875,13.75) and (a2, a2) = (3.125,6.25).
Note that these demands exhaust the available supply of each asset, i.e.
éa‘li =10 and igag" =20.
These asset demands correspond to state-contingent wealth levels of:
(W11, W) = (13.75, 34, 375) and (W2, W;2) = (6.25,15.625).

One can see from Figure 2.3 that arbitrage possibilities may exist for non-
equilibrium prices. At a price ratio of 2, for example, consumer 1 could sell a,
and buy a, in order to obtain arbitrarily high levels of utility. Consumer 2
would, of course, try to sell 4, in exchange for a, as well. Hence, arbitrage pos-
sibilities cannot exist in equilibrium.

2.2 The Mean-Variance Approach and Capital Asset-Pricing

Most economists are content to note the conditions under which a general
equilibrium exists and to leave it at that. At this level of generality, there is little

ay= —%-a, +25

0 5
a 20
B
1375
L
13 o
s E
6875 1 I
o, L ’ @
4y ==2-0,+40
1
a=-za

Fig. 2.3
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in principle to distinguish a general equilibrium in asset markets from a
general equilibrium in goods markets. Certainly interest is rarely expressed in
the explicit relationship among the prices of goods in a general equilibrium.

The same cannot be said of asset markets, however. A great deal of intel-
lectual effort was expended by finance theorists attempting to discover the ex-
plicit form of asset pricing relationships in a general equilibrium. Their work
culminated in the Capital Asset-Pricing Model (CAPM). The CAPM has
formed the basis of literally thousands of empirical pricing studies attempting
to discover how closely actual asset prices conform to their theoretical equilib-
rium values.

Our interest here is not to explore the CAPM in detail but rather to show
how it may be derived from the equilibrium portfolio choice problem we have
been studying. The beauty of the CAPM lies in the particular form of the asset
pricing relationship which emerges. A further strength is its generality, apply-
ing as it does to an arbitrary number of assets and states of the world. A major
limitation, however, is that it is founded on a particularly narrow conception
of preferences. This fact is rarely explained in the finance literature. Coming
from the perspective of general equilibrium theory, as we do here, it should be
evident that special assumptions about individual preferences are required in
order to derive the CAPM pricing formula.

We begin with a discussion of the mean and variance of portfolio pay-offs
since the preference relation required to generate the CAPM depends exclus-
ively on these parameters as arguments. Finally, we derive the CAPM as the
solution to a general equilibrium portfolio choice problem under the special
assumptions implied by mean-variance utility.

2.2.1 Feasible combinations of mean and variance

Consider an arbitrary portfolio a = (aj, . . . ,ax). Associated with such a port-
folio is a state-contingent wealth vector

K
W,(a)='§lr,k-ak, s=1....5

For a given probability vector p = (py,...,p,...,ps) one can compute the ex-
pected or mean pay-off u(a) which is achieved by this portfolio a as:

s s K K S K
u@= 2o W@ =2 pe (S a)= & 5o a= faca
s
where f == SZi P; g denotes the expected or mean pay-off of asset k.
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Similarly, one can compute the variance of the pay-offs from portfolio a,
o2(a).Let oy = T, p,- (1 = 1) + (rg— W) be the covanance of the pay-offs
from assets;and k. For j= k gjj= X3 p, =M * denotes the variance of
the pay-off from asset j. The variance of the pay-off from portfolio a, 52(a),
can now be written as:

@) =5 p (W, =30 (2 )
= Sp (W@ - @) = 5 ( 2 (ram 1) - @)

s=1

=S S (5 (- m) - (e )]
K K
=& %% % O

The transformations of the mean () and the variance 02(a) show that the
mean of a portfolio is the weighted sum of the mean pay-offs of the individual
assets, where the respective asset quantities act as weights. The variance of a
portfolio is the quadratic form obtained from the vector of individual asset
quantities applied to the matrix of covariances of asset pay-offs, i.e.:

c¥a)=a-Q-a where Q :

Since 6'2(a) is a quadratic form which is non-negative for any portfolio 4, it fol-
lows that the covariance matrix must be positive semi-definite. This latter

property implies that the determinant of Q must be a non-negative number.
Every portfolio a has associated with it a mean (a) and a variance 62(a).
There is, however, usually more than one portfolio for any given (i, 62) com-
bination as we demonstrate below. In particular, it is possible to determine the
set of ((a), 02(a) ) combinations which are feasible for the consumer in the
sense that they correspond to portfolios satisfying the budget constraint

é 9k = W,
The feasible set of (1, 02) combinations is written formally as follows:
K
{(@),0%a)) | Z g 4= Wi}.
Note the dependence of the set of feasible (i, 62) combinations on the asset
prices q; and the initial endowment of wealth W,, It is possible to represent

the set of feasible mean-variance combinations in a (i, 2) diagram or, as is
more common in the finance literature, in a mean-standard deviation diagram
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( (1, 0) diagram). The set of feasible mean-standard deviation combinations
has the general form displayed in Figure 2.4.

Note that, in general, all (1, ') combinations in the shaded arc of Figure 2.4
are feasible. If there are only two assets, however, feasible (4, &) combinations
lie on the border of this set only and not in the interior. This latter case is
studied in detail in the following sections. The restriction to two assets facil-
itates a neat diagrammatic derivation of the set of feasible (1, ) combinations
and allows us to compare the (;1, o) approach which dommates the finance lit-

erature with the micr pp loped in this book.

"

Fig. 2.4

2.2.1.1 Feasible combinations of mean and variance in a
two-asset model

We begin by recognizing that it is possible to construct iso- and iso-o con-
toursin (a,,a,) space. Iso-1 contours represent portfolios (a),a,) with the same
mean, say [1. Recalling the formulation of the mean of a portfolio given above,
H(apay) =y - @y + phy - a4y = [l

Iso-1 contours are linear with slope and location parameters 1, and p,. Since
= T3, ps+ rgoitis clear that iso-u contours are drawn for a given probabil-
ity distribution over states. Changing the probability distribution changes the
position and slope of the iso-u contours; however, they remain parallel linear
functions in (a,,a,) space. Iso- contours are depicted in Figure 2.5.

Iso-o contours are obtained by fixing a level of variance G2 (or equivalently
of standard deviation & =V 62):
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02(ay,a,) =0y, - @ +2- 0y, a4y + 0y - a3 = G2

Since squaring a function is a monotonic transformation, the contour curves
of 62(a,,a,) are identical to the contour curves of 0(a,,a,). The equation of a
o2-contour, 0y, - @} + 2 0y, - @y * @ + O, - a3 — 62 =0, is a special case of a
general quadratic equation. For such equations the following result applies.

LEMMa 2.1. Consider the general quadratic equation

0y R+ 20Xt Oy B+ 20 X+ 20 %+ O =0, (2.7)
o) a; Oy
Oy 0, Opy
G Op; Ogo
the determinants of two coefficient matrices of this equation. Then the follow-
ing statements are true:

and A := det[Z:‘ alz]

d denote b; D := det|
and denote by e ) O

(i) For D<0and A > 0, (2.7) describes an ellipse.
(ii) For D=0and A = 0, (2.7) describes a pair of parallel lines.

In terms of the general quadratic equation (2.7), the o2-contour is the special
case where

Oy = Oy = 0, 0 = —6%,and & = o for i,j = 1,2

holds. For the case of the 62-contour, A = det Q > 0 is the determinant of the
covariance matrix which we know to be non-negative since Q is positive semi-
definite. Substituting the respective parameters of the o2-contour into D, we

discover that:
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D=-G62-A=-62-detQ <0.

It follows from Lemma 2.1 that there can be only two cases:

(i) if det Q > 0, the contour of '2(a,,a,) must be an ellipse; and
(i) if det Q = 0, the contour of 62(a,,a,) must be a pair of parallel lines.

Case (i) is illustrated in Figure 2.6. As expected, the contours are ellipses
in (a,,a,) space, centred on the origin and symmetric about a ray through the
origin. Successive ellipses radiating from the origin are loci of (a,,a,) pairs
with successively greater o-values (i.e. standard deviations of contingent
wealth levels). Once again, the position of the family of ellipses depends on
the probability distribution over states. The budget line in (a,,a,) space, a, =
W,/q, - (q,/q,) - ay, is derived from the budget constraint of the portfolio
choice problem. With positive prices for both assets, the slope of the budget
line is negative. Combining the budget line with the iso-4 and iso-o contours
in a single diagram yields the upper panel of Figure 2.7.

Given the iso- and iso-0 contours in (a,,a,) space, it is easy to read off the
mean and standard deviation of state-contingent wealth generated by any
portfolio (a,,a,). In particular, each point on the budget line, representing a
feasible portfolio, lies on a particular iso-4 and iso-& contour. Thus one can
view the choice of the optimal quantities of each asset to hold in a portfolio
as equivalent to the choice of a particular mean and standard deviation of

ay

ay

Fig. 2.6
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Fig. 2.7

state-contingent wealth. The budget line in (a,,a,) space has a unique repres-

entation in (4, 0) space.

Consider the budget line depicted in the lower panel of Figure 2.7.
Beginning at the intercept of the budget line on the a,-axis, the positions of
the iso-/ and iso-0 contours reveal that successive points downwards and to
the right along the budget line have successively higher means, and at first
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successively lower and then successively higher standard deviations. Moving
down the budget line in (a,,a,) space traces out a locus in (i, 0) space of the
type depicted in the right-hand panel of Figure 2.7. Note that the point of
minimum standard deviation corresponds to the point at which the budget
line is tangent to the lowest iso-o contour (shown as A in both panels).

2.2.1.2 Some special cases

The portfolio which achieves minimum standard deviation is known as the
minimum variance portfolio(MVP). In general, the standard deviation or vari-
ance of the MVP will not be zero. This is the case depicted in Figure 2.7. The
variance of the MVP will be zero, however, if one or other of the assets is risk-
less (in which case the MVP is trivially the portfolio consisting exclusively of
the riskless asset), or if it is possible to create a riskless portfolio by combining
the two risky assets in appropriate proportions.

This latter possibility will only arise if there are at least as many different
assets as there are states of the world, a condition we will describe in Chapter 3
as complete markets. Clearly, in the example we have used so far in this section,
markets are incomplete, i.e. there are many states of the world but only two
assets. It is therefore not possible to synthesize a riskless portfolio, and given
that neither of the two assets available is riskless, the MVP will have positive
variance.

If there is a riskless asset, or it is possible to create a riskless portfolio by com-
bining risky assets, the iso-o contours and the (u, o) frontier take on a special
shape. To see this, we revert to the earlier example of two assets and two states
of the world.

Case 1: Riskless asset
An asset is riskless if it pays the same amount regardless of the state of the
world, i.e.if rg = rforall s=1,...,S. Clearly, for a riskless asset t = r, and oy
=0 forall j, k. Hence, det Q = 0 when there is a riskless asset and the iso-o'con-
tours must be pairs of parallel lines. In our two-asset example, let asset 2 be the
riskless asset. The determinant of the covariance matrix is:

det@=det [T 0] =0.

All portfolios with a; = 0 will have a variance of zero in this case. The zero
is0-0 contour coincides therefore with the a,-axis. For any positive level of
variance G > 0, the iso-G contours consist of two lines parallel to the a,-axis.In
general, when one of the two assets is riskless (i.e. offers the same pay-off in
each state), the iso-G contours become straight lines parallel either to the
a,-axis or the a,-axis, depending upon which of the two assets is riskless.
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Case 2: Complete markets
Two asset markets are complete if there are exactly two states of the world and
the asset pay-offs are linearly independent. In this case, the iso-u contours are
given by the equation u(ay,a,) := pya, + U,a, = fI. These are straight lines in
(ay,a,) space.

Writing the probabilities of the two states as pand (1 - p), the standard de-
viation can be transformed to yield:

olaya) =+ ‘j(P (1-p))- [('n =)@+ (ny—ryp)- “2]-

The iso-o contours, 6(a,,a,) = G are therefore also linear in (a,,a,) space. The
iso-ocontours are a set of parallel straight lines and the (¢ = 0) contourisaray
through the origin with slope equal to

_lrn-ry)
(riz=ry)’

It is easy to check that any portfolio on the (o= 0) contour yields the same
pay-off in each state. Contours representing successively higher values of o-are
straight lines parallel to the (o'= 0) contour at equal vertical distances above
and below it.

Recall that the iso-0 contours in the case of incomplete markets were
ellipses centred on the origin and symmetric about a ray through the origin. In
the case of complete markets, the ellipses are ‘stretched out’ infinitely in the
direction of the longer of their two axes, and thus become a set of parallel
straight lines. The (o = 0) contour, instead of being a single point located at
the origin, becomes a ray through the origin. The higher contours, instead of
being ellipses radiating from the origin, become parallel straight lines extend-
ing either side of a ray through the origin.

Figure 2.8 illustrates the case of complete markets in two assets. To deduce
the shape of the (i,0) frontier, we note that the two linear equations for the
iso- and iso-o contours can be solved simultaneously to yield another linear
equation relating 4 and o. This equation can in turn be solved simultaneously
with the linear budget equation to obtain the equation of the (u,0) frontier. It
is important to note that the position and slope of the (¢,0) frontier will de-
pend on g, 4,,and W, since these are parameters of the budget line.

In the presence either of complete markets or a riskless asset, the (11,0) fron-
tier is piece-wise linear. It has the same basic shape as the (1,0) frontier in the
case of incomplete markets except that:

(i) the positive- and negative-sloped sections of the frontier are both linear;
and
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(ii) the standard deviation of the minimum variance portfolio is zero (i.e. the
(u,0) frontier meets the yi-axis at a point equal to the expected pay-off of
the MVP, or the certain pay-off from the riskless asset, if there is one).

The (1,0) function for the case of complete markets is depicted in the lower
panel of Figure 2.8.
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That the standard deviation of the MVP should be zero is consistent with
the fact that a negatively sloped budget line in (a,,a,) space must cross the
(0= 0) contour. The only circumstances in which this would not be true are if
the iso- o contours and the budget line were parallel. But in this situation risk-
less arbitrage would be possible. In any equilibrium, the asset prices will always
be such that the budget line has a slope different from that of the iso-o con-
tours. Given that the budget line will eventually cross the (¢ = 0) contour, there
must be some feasible portfolio for which ¢ = 0,and this will be the MVP.

Example 2.4.
Let the pay-off matrix for the two assets be as follows:

mon2)_[1 0}
LE TR ) % 2

and let the probabilities of the two states be (p, (1 - p) ) = (1/2,1/2). Then the
iso-1 contours are given by the equation

4 _ 7
ay=_-fg-—"-a.
TN
The iso-0 contours are given by the equation
4 G+ 1
a@=t--G+—-a.
2 3 6 il

If we further assume that the prices of the two assets are (g,,4,) = (3/4,1) and
that initial wealth is W, = 1, the equation for the budget line in (a,,a,) space is
(3/4) - a, + a, = 1. Solving the equations for the iso-u and iso-o contours to
find a relationship between 1 and 6, and substituting the relationship between
a,and a, along the budget line, we obtain the equation for the mean-variance
frontier in (4, 0) space as

Notice that the position and the slope of the function depend upon the par-
ticular values of g, g, and W, While it will always have the same piece-wise
linear shape in (,0) space, the graph can only be drawn for a particular value
of g, g and W,

The MVP is found by substituting G = 0 into the equation for the iso-&con-
tours, and substituting the resulting expression for a, into the budget equa-
tion. This gives (4, @) = (12/11,2/11). One can check from the equation for
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the iso-u contours or the (1,0) frontier that the expected value of the MVP
(the synthetic riskless pay-off) is g = 13/11. ]

2.2.1.3 Portfolio choice in mean-variance space

Having established the correspondence between the budget line in (ay,a,)
spaceand the (14,0) frontier, we can proceed to discuss preferences and optimal
portfolio choice. As noted in Section 2.1, selection of the optimal portfolio in
(a,,a,) space is a matter of maximizing expected utility subject to the budget
constraint. The optimal portfolio will lie on the particular (1,0) frontier which
is consistent with the assumed values of g;, 4, and W,

To represent preferences in the (11,0) space directly, a decision-maker’s pref-
erences over risky prospects must not depend on any other characteristic of
the prospect but mean and variance, i.e. there must be a representation of the
form V(4,0). This amounts to the assumption that only its mean and variance
are relevant to the portfolio choice decision. As we show in Section 1.5,such an
assumption is generally incompatible with expected utility theory. The only
way to reconcile the assumptions of expected utility theory with a representa-
tion V(u,0) is to

e restrict decision-making to probability distributions which are com-
pletely characterized by their means and variances (this is essentially the
class of normal distributions); or

o assume a quadratic von Neumann-Morgenstern utility index (which has
the inconvenient property that it is not monotonically increasing in
wealth).

Whether or not the expected utility hypothesis is adopted, assuming prefer-
ences over assets may be represented by a utility function with arguments y
and o, where the marginal utility of 4 is positive and the marginal utility of &
is negative, is sufficient to derive indifference curves in (i,0) space. They will
be upward-sloping, reflecting the ption that an agent must be offered
additional expected wealth in order to be indifferent to the prospect of bearing
additional risk (where risk is measured by the standard deviation of state-con-
tingent wealth).

Figure 2.9 depicts portfolio choice in the mean-variance framework with a
utility function V(u,0). The assumption that V(i,0) is increasing in yt and de-
creasing in o implies positively sloped indifference curves but not the convex-
ity shown here. Utility increases in a north-westerly direction as indicated by
the arrow in Figure 2.9. It follows from the slope of the indifference curves and
the direction of increasing utility that the optimal portfolio must correspond
to a (i,0) combination on the upper branch of the feasible (u,0) set.
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Fig. 2.9

In other words, since the consumer unambiguously prefers a portfolio with
a higher expected value of wealth to one with a lower expected value and the
same standard deviation of wealth, those points on the lower branch of the
(u,0) frontier will never be chosen. Such points are said to be mean-variance
inefficient. The set of efficient portfolios in (1,0) space consists of all those
points on the (1,0) frontier which have both a mean and a standard deviation
at least as great as that of the minimum variance portfolio.

A mean-variance utility function V(1,0) induces a ranking in the (a,,a,)
space as well, since mean and variance depend on the portfolio chosen, i.e.
V{i(ay,a,),0(a;,a,) ). For every preference relation over lotteries which can be
represented by a mean-variance utility function V(1,0), there is an induced
preference relation on the space of portfolios. The converse, however, does not
generally hold, i.e. a preference relation on lotteries cannot generally be repre-
sented by a preference relation over mean and variance alone.

The following example illustrates the choice of an optimal portfolio in a
case where expected utility preferences can be represented in (11,0) space.

Example 2.4 (continued). Let the quadratic expected utility index be u(W) :=
4 - W—(1/2) - W2, We solve for the expected-utility-maximizing values of a,
and a, by substituting into first-order conditions (2.1) and (2.3) above. This
yields the following two equations which are solved simultaneously for the op-
timal values of g, and a,:

3
a,=19-a,-8 and “2=1—Z'”|~

Thus (a}, a3) = (44/61,28/61).
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‘We know from Section 1.5 that the expected utility function can be trans-
formed to yield:

1 1
V(u,d)=4'#—5'02~5‘ﬂ’~

Therefore the slope of an indifference curve in (11,0) space is derived as:

du oV()ldo o

do  ov()/ou 4-u
The slope of the (u,0) frontier, on the other hand, is given by the equation ut =
13/11 + (1/11) - c'as * 1/11. We know that only the positive branch of this
piecewise linear equation is relevant since the negative branch is dominated in
the agent’s preference ordering.

We solve for the optimal portfolio in (u,0) space by equating the slope of an
arbitrary indifference curve with that of the upper branch of the (u,0) frontier,
i.e. 0/(4 — p) = 1/11. This, together with the equation for the (i,0) efficient
set, enables us to solve for the optimal values of y and 6. Thus we obtain
(o7, 1°) = (31/122, 147/122). Substituting into the equations for £ and &
derived earlier confirms that these values correspond to the expected value and
standard deviation of the expected-utility-maximizing portfolio (a3, a3) =
(44/61,28/61).

As a final check, one can calculate the value of expected utility at the op-
timum by

(i) substituting (aj, a3) = (44/61, 28/61) into the expected utility function in
(ay, a,) space, and

(i) substituting (¢, ') = (31/122, 147/122) into the expected utility func-
tion in (i4,0) space.

In each case, the result is approximately 4.06. n

Of course, dispensing with the need to represent preferences in (,0) space
overcomes the need to consider a restricted range of utility functions. The
fundamental space in which portfolio choice takes place is (a),a,) space. The
tradition in finance theory of using the (1,0) space to tell the story of portfolio
selection unnecessarily restricts the range of preferences which consumers
may display. This fact is rarely, if ever, made explicit. A distinguishing feature
of financial economics as opposed to finance theory is a preference for reveal-
ing the fundamental economic forces at work in financial decision-making.

Restricting preferences to the (11,0) space has the advantage, however, of en-
abling one to derive an explicit relationship among asset prices in an asset mar-
ket equilibrium. This is the essence of the Capital Asset-Pricing Model to
which we now turn.
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2.2.2 The capital asset-pricing model

We consider once again the portfolio choice problem faced by individualsin a
general equilibrium involving a finite number of agents and a finite number of
assets. A famous result in the finance literature characterizes the relationship
among the prices of assets in a general equilibrium in which there are I con-
sumers, (K — 1) risky assets, and one riskless asset. Known as the Capital Asset-
Pricing Model (CAPM), the analysis proves the surprising result that the
relationship among the prices of assets in a general equilibrium (in which
agents select assefs so as to maximize mean-variance utility) is linear. Apart
from being surprising, the result is especially convenient, since it lends itself
immediately to the application of linear regression estimation techniques, as
the vast literature on empirical testing of the CAPM testifies.

Our purpose here is to derive the capital asset-pricing equation (the general
equilibrium-pricing relation) from the microeconomic foundations of port-
folio choice developed in the earlier sections of this chapter.!

We begin by reminding ourselves of some definitions. The vector a =
(ay,...,a) represents a portfolio, where the elements correspond to quantities
of each of the K assets held in portfolio. The assets have pay-offs in each of the
Sstates denoted ry (s =1,...,5; k= 1,...,K). The wealth derived in each state
of the world depends upon the quantity of each asset held and the pay-off from
each asset in the particular state, i.e.

K
Wa) =,r2‘ Tk

fors=1,...,S. As shown in Section 2.2.1, the expected wealth derived from a
portfolio a equals the sum of the expected pay-offs from the individual assets
weighted by the quantities of the assets held in portfolio:

K
H(a) = AZ:‘ M A

where 11, is the expected pay-off from asset k (k= 1, .. .,K). The variance of
state-contingent wealth derived from holding a portfolio a is expressed as:

K K
o%(a) :g_;] - 7=zl %" %
If we differentiate u(a) and 0%(a) with respect to a, we obtain the following:
Hla) = Ly

where p1,(a) := du(a)/da, denotes the partial derivative of u(a) with respect to
a,, and, denoting the partial derivative of 0%(a) with respect to a,by 6% (a) :=
9 02(a)/0a,,

1 The derivation of the CAPM follows Brennan (1989).
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K
o(a)=2- L):_l a- o,k] =2-o(af).

Note that o(a,¢) := XK, a- 0y is the covariance between the pay-off of the
entire portfolio a and the pay-off of a single asset ¢:

olal) = F)S:l ps+ (re= 1) - (W(a) — p(a))
s, K
= 2P (g ) - 2 (rae— ) - o
K s,
= 0 2Py (re— ) (re— 1)
K
= ,E] " Oy
Now consider the optimization problem for some consumer i € {1,2,...,I}:
sz Vi(u(a), 0%(a) )
K K
subject to A):_I - A :hzl i Gy
Denoting by Vi(-) := dVi(-)/ou and Vi(-) := dVi(-)/00? the partial derivatives
of Vi(-) with respect to 1 and 02, the first-order conditions for this problem are:
Vi(u(a), 0%(a) ) - pfa) + Vi(u(a), 0%(a) ) - 03(a) - A- 4, = 0 ™

fore=1,...,K

and

p> $ qa

& B %= & Qi A
where 4 is the Lagrange multiplier of the budget constraint. The first-order
conditions implicitly define asset demand functions of the following form

a;=fi(qu ... qx @,....a0) foralle=1,...,K.

A general equilibrium in this exchange economy is a vector of asset prices
q = (q), . . . ,qx) together with a vector of asset demands for each consumer
i=1,2,...,I,a" = (aj,...,ak) such that:

M-
Y
=
I
TM~
EY

o2

' n - .
E]fi(q},.--,qi;d’p.--,ﬁ;()= =: A
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where A, denotes the aggregate quantity of the asset available in the economy.
In words, the quantity of each asset demanded in equilibrium by all consumers
precisely exhausts the available supply.

The capital asset-pricing equation is derived from the first-order conditions
(*) given above, evaluated at equilibrium, and assuming that one of the assets
is riskless.

Assuming that asset K is riskless, we know that rye=rforall s=1,...,S.
Therefore the partial derivatives of the expected pay-off and variance func-
tions with respect to changes in the quantity of asset K held in portfolio are, re-
spectively, uy(a) = rand 0}(a) = 0(a,K) = 0.Substituting these values into the
first-order conditions and choosing the riskless asset as numeraire gy = 1, we
solve the K-th first order condition for the Lagrange multiplier as:

A= Vi(u(a"),0%a")) - r.
Substituting for 4, 4,(a) and 02 (a), the first K-1 first order conditions (*)
become:
Vi(u(a), 0X(a") ) - (= q, - 1) + 2 - Vi(u(a®),0%(a") ) - 5‘1 ar- 0, =0.
This equation may be rewritten as:
Oiar) - (t— g, 1) = f_l -0 @8

where Oi(ai*) := - Vi(u(a’"), 02(ai"))/(2 - Vg(u(a"),o'z(a") )) is the marginal
rate of substitution along an individual agent’s indifference curve in (1,0) space.

Summing (2.8) over all consumers, and noting that 1 aj;= Ay in equilib-
rium (market clearing), we obtain:

6(a’) - (4~ q,- 1) = o(A0), (29)
where &a’) = Zi_, O (a' ) is the sum of the agents’ marginal rates of sub-
stitution and 0(A¢ A] 0y, is the covariance of asset ¢ with the aggreg-
ate endowments, A = (A,, ... ,Ax). Note the dependence of these marginal

rates of substitution, and their summation, on the equilibrium asset allocation
a'. This reminds us that the capital asset-pricing equation is strictly true only in
a general equilibrium of the asset economy.

Finally, multiplying equation (2.9) by A,and summing again over all risky
assets¢=1,... K—1,weobtain

0(a) - [U(A) = 1+ W,(A)] = 0%(A), (2.10)

where t(A) := XK, 1, A, is the mean return on the aggregate endowments,
i.e. the market portfolio, and W,(A) := X, g, A, is the market value of the
market portfolio. Solving equation (2.10) for 6(a’) and substituting this
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expression into equation (2.9) removes all preference-dependent terms from
this equation. A simple rearrangement of terms now yields the CAPM formula
for asset units:

_o(A9

[y,_r-q;l = Fa |- W) (2.11)

This formula says that the deviation of the mean return of one unit of a risky
asset ¢ from the return of an investment of the necessary amount of money, g,,
in the riskless asset is proportional to the difference between the mean return
on the aggregate endowments and the riskless return on an investment of the
market value of the aggregate endowments in the riskless asset. Moreover, the
factor of proportion is the normalized covariance of the asset with the aggreg-
ate endowment, the market portfolio. Notice that this relationship must hold
irrespective of the. precise form of the utility function Vi(-), as long as they de-
pend on pand oonly.

Up to this point, we have kept with the economist’s preferred mode of
operation, in which we measure asset pay-offs per unit of asset and measure
the quantities of assets held in a portfolio in absolute units. To complete the
derivation of the CAPM, we switch to the finance theorist’s preferred mode of
operation, and measure asset returns as pay-offs per unit invested and asset
quantities in units of expenditure. Thus, instead of an expected pay-off, 1;, an
asset has an expected (rate of) return in equilibrium of g := g, /gj. Similarly,
instead of an optimal quantity of asset k in equilibrium, a}, we speak of the
optimal investment share in total expenditure on asset k, 4} := aj - qi/ Wi
These equilibrium rates of return and expenditure shares clearly depend on the
set of equilibrium asset prices, gj, and the initial endowment of the investor.

Thus, dividing equation (2.11) by g,and bracketing out W,(A) on the right-
hand side, one obtains:

[ 0 r] _ G(A0
(A

where fi(A) := pt (A)/W,(A) denotes the average return on the market port-

folio per unit of money invested in it and G(A, ¢) := 0 (A,¢)/(q,- W,(A) )is the

covariance between the asset ¢ and the market portfolio per unit of money.

G%(A) := 0%(A)IW,(A)?is the variance of the market portfolio per unit of

money.

Writing B, := 6 (A, ¢)/d*(A)equation (2.12) becomes:

(le= 11 = B, [(A) - 1. (2.12)

This is the familiar capital asset-pricing equation. It states that, in equilib-
rium, the difference between the expected rate of return on each risky asset and

[ﬁ(A) - rl, (2.12)
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the riskless rate of return is proportional to the difference between the ex-
pected rate of return on the market portfolio and the riskless rate of return.
The factor of proportionality, 3;, varies directly with the covariance of the re-
turn on the market portfolio with that on the risky asset ¢. If the covariance of
the ¢-th risky asset with the market portfolio is greater than the covariance of
the market portfolio with itself (i.e. the variance of the market portfolio), 3,
will be greater than one, and the risk premium required by the market in
equilibrium will exceed that required on the entire portfolio of risky assets.
This is illustrated in Figure 2.10.

Figure 2.10 shows why the CAPM has been so popular with finance analysts.
In principle, one can observe the riskless rate of interest and the return on a
market portfolio of risky assets. In practice, analysts usually take a stock-
market index as the relevant ‘market portfolio’ Time series of interest rates and
changes in the valuation of stock-market indices are readily available and one
can use familiar estimation methods to determine the 8 of a particular risky
asset. Equipped with such an estimate, the ‘risk premium required by the mar-
ket can be calculated and compared to the one implicit in the actual asset
price. Purchasing an asset with an actual risk premium exceeding the one pre-
dicted by the CAPM and selling assets with CAPM risk premiums that exceed
the actual one is a common decision rule for investors in financial markets.
This fact makes the CAPM a useful instrument for the analysis of asset prices
in financial markets.

It is important to see, however, the limitations of this approach. The reason
why we can derive a ‘pricing formula’ which does not depend on ‘individual
characteristics’ of the market participants is that all investors choose portfolios

risk premium of the market portfolio

He
i(a) risk premium of asset {
’
0 1 Y2 B

Fig. 2.10
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that minimize the variance for a given mean return. This property alone is suf-
ficient to establish the formula in equation (2.11) (Exercise 7). Minimization
of the variance of a portfolio for a gwen mean return is unrelated to a con-
sumer’s prefe though the minimizing portfolio will depend on the in-
vestor’s initial endowment of assets. However, these will sum to the aggregate
endowment, i.e. the market portfolio. !

The CAPM is important because it was the first equilibrium model of asset-
pricing under uncertainty. It spawned a vast amount of theoretical and applied
literature, the former seeking to relax the strong assumptions underlying the
model and the latter seeking to apply the model to actual stock-price data. The
CAPM was severely criticized by Roll (1977) who undermined empirical test-
ing of the CAPM by pointing out that the market portfolio could never be ob-
served in practice. While the CAPM continues to be used in empirical finance,
the effect of Roll’s critique was to direct attention to an entirely different ap-
proach to asset pricing pioneered by Ross (1976), i.e. the Arbitrage-Pricing
Theory, which justifies estimation methods similar to those used by finance
analysts for the CAPM.

Notes on the Literature

The pure exchange model of asset markets is usually found in economics text
books like Varian (1992). The parallel analysis of equilibrium in asset space
and contingent wealth space highlights the restrictions on asset prices which
follow from the need to rule out arbitrage in equilibrium. This is a novel fea-
ture of this chapter.

Mean-variance analysis is a core concept in introductory finance textbooks.
A good basic treatment is that of Copeland and Weston (1988). More
advanced expositions are available in Ingersoll (1987), Huang and Litzen-
berger (1988), and Milne (1995). The classic development of the basic frame-
work is Markowitz (1952). The exposition in Fama and Miller (1972) has also
stood the test of time. The Capital Asset-Pricing Model (CAPM) was de-
veloped by several finance theorists, among them Treynor (1961), Sharpe
(1964), Lintner (1965a), and Mossin (1966). A valuable overview of the
Capital Asset-Pricing Model and its place in the evolution of finance theory is
contained in Brennan (1989).
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Exercises

1. Consider an with one dity and two s, i=1,2. The
s have identical prefe es which can be represented by the von

Neumann—Morgenstern expected utility. func.’xon u(x) = In x. There are two pos-

sible states in regard to the g : (i) either 1getsan

endowment @' = 1 and consumer 2 obtains w2 = 3; or consumer 1 gets an en-
dowment @' = 3 and consumer 2 obtains @? = 1.

(a) Derive the equilibrium allocation and the equilibrium prices in this
economy for each of the two states.

(b) Suppose that consumers can trade in contingent contracts for purchases
and sales before the states become revealed. Derive the equilibrium prices of
these contingent contracts under the assumption that both consumers assess
the likelihood of the two states with the same probability distribution.

(c) Compare the equilibrium allocation in the two states that arises from
trade in contingent contracts to the allocation arising when only spot markets
exist. Are both consumers better off?

(d) Suppose there are no contingent contracts possible, but consumers can
trade in asset markets before the states are revealed. Assume that there is a
bond that pays interest r > 0 and a stock that pays r, > O in state 5, s = 1,2. What
conditions must the return rates r, r;, r, satisfy to obtain the same allocation as
with contingent markets? Derive the equilibrium prices of these two assets.

(e) Consider the consumers before the true state is revealed. Would the con-
sumers want to know which state will occur? Is information about the state
valuable?

2. Consider two portfolios a = (a,, . ..,ax) and a' = (ay, .. . ,ay) satisfying the
budget constraint of a consumer.

(a) Show that any portfolio a* = A+ a+ (1 - A) - @', A € R, satisfies the bud-
get constraint as well.

(b) Let @’ be a portfolio that invests all wealth in the riskless asset. Show that
the mean variance combinations (M(a?), S(a?) ) of all portfolios a*, A € R, lie
on a line in mean-variance space.

3, Show that any portfolio choice problem with asset prices q = (q, . . . ,qx) and
initial wealth W, where the decision-maker chooses quantities of assets is equiv-
alent to another portfolio choice problem where the decision-maker decides which
proportions of her wealth to invest in the assets.
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4. Consider an investor with mean-variance preferences represented by the utility
function V(11,02) which is increasing in the mean |1 and decreasing in the vari-
ance a2. The investor can choose a portfolio of K assets a = (a,, . . . ,ay) yielding
returns = (ry .. .org), k=1,...,K, in S states of the world. The price of asset
kisqy, k=1,...,K. The probability distribution over states is given by the vector
(P1s---5ps)-

(a) Derive the mean (a) and the variance 62(a) of a portfolio a.

(b) Derive the first-order conditions for an optimal portfolio.

(c) Show that the optimal portfolio minimizes the variance over all portfo-
lios with the same mean value that satisfy the budget constraint.

5. Consider two portfolios of K assets, a and b, that minimize the variance given
their mean returns pi(a) and p(b) respectively.

(a) Forany A € (0,1), show that A - a + (1 - A) - bis a portfolio as well. For
the case of two assets, draw a diagram showing the portfolios created by form-
ing a convex combination of the portfolios aand b with some A.

(b) Prove the following statement: ‘If the portfolios a and b cost $100, then,
for any A, the portfolio A - a + (1 - A) - bcosts $100 as well”

6. Consider an economy with I investors, i =1, ... ,I. Each investor is endowed
with a portfolio of asset holdings ai = (aj, ... ,aj). Investors trade assets at given
market prices (q,, . . . ,qx). Assets pay returns r,= (r,, . . .,r) in each of S states
that occur with probabilities (p,, . . . ,ps).

(a) Write down the definition of an asset-market equilibrium for this eco-
nomy.

(b) Show that, in equilibrium, the (per capita) aggregate endowments of as-
sets form a convex combination of the optimally chosen (per capita) portfolios
of the investors.

7. Consider an economy with trade in K assets at market prices (qy, . . .,qx). Assets
pay returns ry= (ry, . .. ,r) in each of S states that occur with probabilities
(Prs---5ps)-

(a) Write down the optimization problem for the choice of a portfolio that
minimizes the variance subject to the constraint that it satisfies the budget
constraint and that it achieves a certain level of mean return.

(b) Derive the first-order conditions for the variance-minimizing portfolio.
Are these conditions sufficient as well?

(c) Assume that asset K is riskless with return R and price g = 1. Show that
the first-order conditions for the K — 1 risky assets can be written in the fol-
lowing form:

o (k, a)

[Hx—aqi- R = o(a)

+ (u(a) =R~ é G- @l
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3

SYSTEMS OF FINANCIAL
MARKETS

The central theme of this chapter is the structure of financial markets. The first sec-
tion reminds us why efficiency of trade fails if there are no financial markets. We then
consider two extreme forms of financial assets: (i) financial assets where each asset
specifies the delivery of one particular good under well-specified conditions; and (ii)
financial assets where each asset specifies the delivery of a numeraire good (money)
in just one spot market. Both systems of financial markets can provide lradmg op-
portunities that allow agents to achieve a Pareto-optimal allocation in c

markets. An important insight of the analysis is the observation that a minimum
number of sufficiently distinct securities is necessary for efficiency of trade.

3.1 Some Preliminary Considerations and Definitions

The history of the world can be conceptualized as one of infinitely many pos-
sible paths through an event-tree of the type depicted in Figure 3.1. Each node
of the event-tree is a date-state pair and represents a unique historical con-
junction of time and the resolution of uncertainty. Each state is a complete de-
scription of all aspects of the exogenous environment that traders consider
relevant for their decisions. This may include weather conditions, the configu-
ration of political parties in power, or social conditions.

At each date-state pair, consumption of goods and services takes place and
consumers may trade in spot markets. Commodities are indexed by a pair, in-
dicating the particular date and state of the world in which they will be con-
sumed. Even if the underlying good or service is physically identical,
appending a date-state index creates commodities which are analytically dis-
tinct. Wheat consumed at node aat time 0 is conceptually different from wheat
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Fig. 3.1

consumed at node fat time 2. This distinction is not simply a matter of theory;
in real-world futures markets, traders distinguish between ‘spot wheat’, which
is available for immediate delivery, and, say, ‘July wheat, which is available for
delivery next July. They are distinct commodities (in this case, indexed only by
time and not also by the state of the world) and can be expected to trade at dif-
ferent prices. Similarly, there is trade in insurance contracts that promise pay-
ments or replacement of goods under certain specified contingencies. Insuring
a replacement car against damage in a road accident may be priced differently
from insuring the same car against theft. A commodity that is created by in-
dexing an underlying good or service by (he date and state in which it becomes

ilable is known asa i y. Since each contingent commod-
ity is a separate entity, regardless of whether the underlying good or service is
the same, it has a distinct price.

An event-tree as in Figure 3.1 not only describes all possible states and dates
of the world but, by the sequential nature of time, also describes the evolution
of information about these states. As the history of the world unfolds, whole
sections of the tree become irrelevant. For example, if, at date 1, state beventu-
ates, states ¢, g and h at date 2 (and states to which they lead at later points in
time) fall out of consideration. Thus a trader knows at date 2 whether states in
the upper part of the tree (following b) or in the lower part of the tree (follow-
ing ¢) can be disregarded in further pl
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Whether this sequential revelation of information matters for a trader’s
decision-making depends crucially on the structure of financial markets. If
there are no financial markets in the economy, traders are confined to trade in
spot markets. In this case, information about states cannot affect their de-
cisions. We consider this case in more detail in the next section.

Alternatively, financial markets may open in period 0 only, and never again
thereafter. If this is the case, the gradual release of information is once again ir-
relevant for the decision-making process. All that agents know when they trade
in financial assets is the set of possible date-state pairs. One can therefore
equivalently drop the reference to time-periods and, by relabelling states, con-
sider each date-state as a state. This simplifies the event-tree to the form de-
picted in Figure 3.2, since the dynamic structure of information revelation
about states has vanished.

Fig. 3.2

Note that there is a finite number of states in the tree of Figure 3.2. This cor-
responds to the case where the event-tree in Figure 3.1 ends in terminal nodes.
If the tree grows forever, the set of states would be countably infinite. Such a
case is no different conceptually from the finite case but demands more so-
phisticated mathematics.

In line with the literature, most of this chapter deals with the case where
trade in financial assets occurs once only in period 0. Without loss of general-
ity, we assume throughout that the set of states is finite. Indeed, the portfolio
choice model treated in Chapter 2 can be viewed as a special case of this ap-
proach. Though we consider a set of spot markets for commodities in period 0
together with a set of financial markets, it will become clear that trade in
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commodities in period 0 is irrelevant. The crucial assumption is that trade in
assets is impossible after date 0.

It is only in Chapter 4, where we deal with option-pricing, that sequential
trade in securities is considered. Though in a very much simplified version, we
consider the case where trade in securities is possible in an infinite sequence of
periods. The main consequence of sequential trade in securities is the fact that
a smaller number of assets, i.e. a simpler structure of financial markets, may
sufﬁc}eﬂ,anequilibrium in securities markets to be Pareto optimal.

Before beginning to analyse the structure of financial markets, it is useful to
introduce some notation for the case where trade in financial assets takes place
in period 0 only.

Let I = {1,...,]I} be the set of consumers, L = {1,...,L} be the set of under-
lying goods and services and S = {1, ...,S} be the set of states at date 1. Using
the subscript 0 to signify the single state at date 0, a typical consumption
bundle consumed by consumer i is written as:

P LY C- S Y ¢~ SRR SEE - TR PIAY - TRPE - AN
where x{, represents the quantity of commodity ¢ which consumer i plans to

consume should state s occur. Similarly, a typical endowment bundle for con-
sumer iis written as:

@ = (0 ..., 0) = (05 ... O3 By O35 Oy, Op),
where @, represents the quantity of commodity £ which consumer i owns in
state s. Finally, we assume a utility function Vi(xi) exists on the space of con-
tingent commodity bundles representing the preferences of consumer i over
those bundles.

3.2 Spot Markets

We begin by considering a hypothetical market structure in which it is not
possible to trade goods and services until the prevailing state of the world is
known, i.e. uncertainty is resolved. This is equivalent to the assumption that it
is not possible to trade contingent commodities with different state indexes
before these states actually eventuate. Thus it is possible to exchange x,, for x;,
but not x;, for x,,. In other words, it is possible to trade commodities which are
available in a particular state but trade between different states, whether in the
same underlying good or not, is not possible. Such an economy is referred to as
a spot market economy. The term ‘spot market’ refers to a goods market system
in which all trade takes place in the same state.
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A consumer in such an economy faces a choice problem of the following

type:
Max Vi(xi) s.t
x
Por %y < por @
P X < py ] forallse$S
xi20,

where p, is the vector of spot prices of the L underlying commodities in state
(date) 0and p,, ... ,psare the spot price vectors of the L underlying commod-
ities in each of the Sstates.

Note that there are as many budget constraints as there are states. In each
state, consumers are constrained to consume a bundle of goods whose value at
prices ruling in that state does not exceed the value of their endowment in that
state. They cannot augment their consumption in one state by sacrificing con-
sumption in another state. In other words, they can neither save (exchange
goods l%iwﬁrﬂ&s)_&ins;e(i(change goods between states).

Equilibrium in a spot market economy is an allocation plus a set of prices
which clear spot markets in each state. This allocation will be Pareto optimal
within the confines of the spot market economy, i.e. ‘constrained’ Pareto op-
timal. Pareto impro s are not possible so long as the constraints im-
posed by the spot market structure of the economy are observed. Relaxing
those constraints, for example, by allowing trade between different states, will
create opportunities for Pareto improvements in the consumption allocation.

Example 3.1. Suppose there is just one underlying good, i.e. L = {1} and that
there is no uncertainty, i.e. S = {1}. The ith consumer’s choice set is depicted in
Figure 3.3 as a single point. It is not possible for the consumer to exploit gains
from trade between dates (by saving/dissaving) within the constraints im-
posed by the spot market economy.

Suppose instead that there is just one underlying good, i.e. L = {1}, twc
states of the world, i.e. S = {1, 2} and no trade at date 0. The ith consumer’s
choice set is again a single point as depicted in Figure 3.4. This time, however,
the commodities measured on the axes are contingent commodities. In this
case, the structure of the spot market economy prevents trade between states
(i.e. forbids insurance). [ ]

The distinctive feature of the spot market economy is that the prices attach-
ing to contingent commodities _in_m@ium are the same as the spot prices
which would aj tha i staf materialize, The prices which
clear the various contingent commodities markets are the prices which will
clear the spot markets {ipon the resolution of uncertainty and the realization
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No Saving / Borrowing

of

Fig.3.3

No Insurance

Fig.3.4

of one of the Sstates. In effect, there are S + 1 different configurations of the L
spot commodities markets, one at date 0 and one each for the S possible states
of the world, and it is not possible to rearrange the endowments in each of
these configurations by exchanging commodities between them.

3.3 Contingent Claims Markets

Consider now the situation where consumers can trade in period 0 financial
assets called contingent claims. A contingent claim is a firm promise to deliver
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one unit of a particular commodity in a specified state and nothing otherwise.
It can be thought of as an elementary insurance contract. Let p,, be the spot
price of a claim to one unit of commodity ¢ to be delivered in state s. Note that
this price is different from p,,, which is the price of one unit of commodity ¢if
state s actually materializes.

In the previous section, p,, was referred to as the spot price of commodity ¢
in state 5. The price p,,, on the other hand, is the price in the current period 0 of
a contingent claim to commodity ¢in state s. Unlike contingent commodities in
a spot market economy, contingent claims allow for trade between as well as
within states.

Let bi, be the quantity of contingent claims to commodity ¢ in state s held/
issued by consumer . If bi, > 0, the holder of the claims receives bi, units of
commodity ¢in the event state s materializes; if bi, < 0, the holder of the claims
delivers bi, units of commodity ¢in the event that state s materializes. We write:

bi=(b,....b) = (bly,.. . b . it .o by
The consumer’s problem now becomes:

Max Vi(xi) s.t.
xi,bi

bo %+ Zh B S o @)
0<xi, < wi,+ bi, forall seS,¢el.

The existence of contingent claims allows individual consumers to modify
their endowments of contingent commodities in each state. Notice that there
are no budget constraints for the states s = 1,...,S. Because consumers can ex-
change claims to consumption goods in these states, no actual trade is neces-
sary.if and wh’ﬁth‘e"slatcs-mw' fact, if markets for goods were to
open inan: e, no trade would occur. Note, however, that ﬂ’m—

ﬁﬁiﬁm@rm‘h{é—wh holds. Thus, a consumer can-
not promise to deliver more than all of her endowment of any good in any
state. It is now possible for trade between date 0 and date 1, and between dif-
ferent states, to occur, i.e. for consumers to save and/or to purchase insurance.

Rather than the multiple budget constraints of the spot market economy,
the contingent claims market economy faces consumers with a single budget
constraint. This can be verified by substituting bi = xi — ]into the budget con-
straint and re-expressing the consumer’s problem as:

Max Vi(xi) s.t.
xi

Por %+ JBorxi S po- @)+ TPy
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In the contingent claims market economy, trade takes place in contingent
claims at date 0 and no retrading is necessary at date 1 when the state of the
world is resolved. At that time, contracts are simply fulfilled and goods
exchanged in the ratios agreed at date 0, a result reflected in the following
definition.

DEFINITION 3.1. A competitive equilibrium of the contingent claims
economy is a price vector: p= (Pg, Pys - - - Ps) = (Pous - - - sPors Pris - - P15 - -3
Psi» - - - »Psy) and an allocation of state contingent consumption x!, . ... ,x! such
that:

xi € argmax{Vi(x) | X2 0, py - %+ z_sﬁ,-x;‘s,so -+ Zh wj}foralliel
and

Yxi,= Ywi, foralls=0,l,...,Sandall¢=1,...,L

el el
This definition is identical to that which obtains in a pure exchange economy
under certainty. A contingent claims economy is in fact identical to a pure ex-
change economy in all respects, except that the objects of trade are claims to
commodities contingent upon particular states of the world occurring at
particular dates in time.

An immediate implication is that such an equilibrium is Pareto optimal (by
the First Fundamental Theorem of welfare economics). Strictly speaking, the
optimality is ex ante, since it refers to the trading of contingent claims before
the resolution of uncertainty. Nevertheless, no further trade takes place ex post,
i.e. on spot markets. The exchange of goods upon the realization of the state
merely represents the fulfilment of prior contingent contracts.

Example 3.2. Let L= {1}, I={A, B}, and S = {1, 2}. Figure 3.5 depicts an ex-
change equilibrium in which consumer A trades claims to the consumption
good contingent on state 1 against claims to the consumption good contingent
on state 2. Consumer B performs the opposite exchange. Note that the aggreg-
ate endowment of the consumption good is larger in state 1 than in state 2.
This represents aggregate uncertainty or social risk. By exchanging contingent
claims to consumption, i.e. engaging in mutual insurance, each consumer has
reduced his exposure to uncertainty and improved his welfare.

In the special case where the aggregate endowment of the consumption
good in each state is the same (Figure 3.6), so that there is no aggregate uncer-
tainty, risk-averse with von N Morgenstern expected util-
ity functions will fully insure. The exchange equilibrium will lie on the
diagonal of the (square) Edgeworth box diagram and the prices of contingent
claims will be proportional to the probabilities of the two states, 7, and 1, i.
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b S|
P m
This result will- be proved in Exercise 2. [ ]

It is not difficult to confirm that a contingent claims equilibrium is optimal
ex post as well as ex ante. In other words, if spot markets were opened upon the
resolution of uncertainty, no agent would desire to engage in further trade.
Assuming an interior optimum,! the following equality holds for all k,¢€ L
andalls,teS:

. Vi
P 9%

In particular, when s = t, we have:
b, dVi(x) | AVi(x)
Pa 0x;, 0xgy
which indicates that marginal rates of substitution between any two com-
modities are equal in equilibrium, even after the resolution of uncertainty, i.e.
within any single state. Thus there are no gains to be reaped from engaging in
further trade.

Contingent claims markets allow consumers to attain optimal allocations
under conditions of uncertainty but at the expense of the need for a vast num-
ber of financial assets to be traded. In addition to the L spot markets for com-
modities at date 0, S - L financial markets for contingent claims are required,
making a total of L + (S - L) markets in all. Of course, this is not a problem if
markets are costless to operate and if consumers are fully informed about all
trading opportunities.

Before turning to more realistic financial assets, another artificial type of
security is introduced in the following section. Arrow (1964) showed that
economies with a complete set of such assets, called Arrow securities, provide
the same trading possibilities for consumers as economies with contingent
claims markets.

3.4 Arrow Securities

Unlike a contingent claim which promises to deliver one unit of a physical
commodity in a specified state, an Arrow security promises to deliver one unit

1 The proof that this claim hold:

if h corner solution, is left as an exercise.
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of purchasing power in the specified state. This quantity of purchasing power
is then used to purchase physical commodities on spot markets once the state
of the world has been resolved. By construction, there can be at most S Arrow
securities.

_Let d; be the quantity of Arrow security k bought (sold) by consumer i if
4> 0 (< 0). A portfolio of Arrow securities is a vector:

di=(di,...,a0),

where security k€ {1, ...,K} pays one unit of purchasing power in state k€ §
and nothing in any other state. The index of an Arrow security is identical to

the state in which it pays off. The possibility that there might be fewer Arrow
securities than states of the world gives rise to the following definition:

DEFINITION 3.2. A set of Arrow securities is said to be completeif K = Sand
incompleteif K< S.

An economy with a complete set of Arrow securities markets, i.e. exactly
K = Ssecurities, can achieve the same trading possibilities as an economy with
a complete set of contingent claims markets.

Let 4= (4, - . .,d) be the vector of Arrow securities prices. The consumer’s
problem is written as follows:

Max Vi(x) s.t
£ i di
Po-xh+4- 4 py- 0f
P Xi<p- wi+dl forallse S
xi20.

Notice that there are budget constraints for spot markets in the states s =
1,...,S. Since Arrow securities do not require direct delivery of goods, trade in
goods and services must occur once the true state becomes known and trans-
fers of purchasing power according to the Arrow securities, 4} have been car-
ried out. Note that Arrow securities do not pay off in terms of a particular good
but pay some amount of purchasing power. One might wonder whether the
choice of a numeraire commodity in each state would affect the allocations of
goods that a consumer can achieve. As the following argument shows, this is
not the case if there is a complete set of Arrow securities. As will be discussed at
some length in Section 3.6, the independence of the equilibrium allocation
from the choice of a numeraire no longer holds if Arrow securities markets are
incomplete.

To see that the economy with a complete set of Arrow securities is in fact
identical to an economy with a system of contingent claims markets, multiply
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the budget constraint in each state by the price of the respective Arrow secur-
ity, 4 and sum over all budget constraints to yield:

Max Vi(xi)  s.t.
xt

Po %+ T dy pr X S por wh+ X4y py- @
€S =
20

This is identical to the ’s problem in the i claims
when we note that py, = po, and g, - p,, = p, fore=1,...,L.

In equilibrium, the price of a contingent claim to one unit of commodity ¢
in state s is equal to the price of a bundle of Arrow securities which pay off in
aggregate an amount sufficient to purchase one unit of commodity ¢ on the
spot market should state s materialize. Such an amount is the spot price of
commodity ¢in state s expressed in units of the numeraire.

We can draw further inferences. Since 4, - p,, = p, for all se Sand ¢ € L, we
have:

Pa_ 4Pa_Pa

Sl O =
Pu G Pk Px

In other words, relative prices between any two commodities within a given

state (i.e. relative ‘spot’ prices) are equal to the relative contingent claims prices

and to the relative prices of the appropriate bundles of Arrow securities.

Furthermore, for s,t€ S:

_EL _;;Eu

N
The relative price of the same commodity in different states equals the ratio of
the spot-market price of the commodity in each state multiplied by the Arrow
security price for that state.

Choosing a numeraire commodity in each state by normalizing the price of
a commodity to one, say, for commodity 1 in states sand ¢ (i.e. py = 1 and
Pn = 1), the equilibrium state—price ratio of this commodity 1 will determine
the Arrow security price ratio /4, The choice of numeraire does not disturb
consumer’s choices amongst state-contingent commodities and, therefore, has
no effect on the equilibrium allocation.

A complete set of Arrow (or ‘pure’) securities markets is sufficient to replic-
ate the equilibrium allocation in an economy with a full set of contingent
claims markets. Summing the L spot markets at date 0, the L spot markets in
the state which eventuates and the S markets for Arrow securities gives a total
of 2 - L + Smarkets required for optimality rather than the L - (S + 1) markets
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required with contingent claims. Thus the number of markets required for op-
timality can be reduced substantially via the device of Arrow securities.

The two financial market systems studied so far provide benchmarks for the
study of ordinary securities in the following section. A system of contingent .
claims markets creates a pure exchange economy in contingent commodities.
This is the most extensive system of financial markets that one can imagine. A
complete system of Arrow securities provides the same trading opportunities
for consumers as the contingent claims system of financial markets but with
the smallest possible set of financial markets. Section 3.5 investigates whether
systems of ordinary securities are capable of achieving the same trading op-
portunities.

3.5 Ordinary Securities Markets

Ordinary securities, the type of asset studied in Chapter 2, pay off units of pur-
chasing power in more than just a single state. An ordinary security k is char-
acterized by its state-contingent pay-off vector

L (TN N ) N

where r,; denotes the number of units of purchasing power that a holder of one
unit of asset k receives if state s occurs. If there are K ordinary securities, their
pay-off vectors, written as column vectors, can be combined in a pay-off
‘matrix as follows:

Note that columns indicate the pay-off vectors of the K assets, while rows give
the pay-offs of the assets in the vari\oﬁgt_a‘tes,“

[N (AN N

An ordinary security kis traded in period 0 at price g, and the vector of se-
curity prices is written

q=(qp---»9%)-

Denotmg by aj the quantity of asset k bought (af > 0) or sold (a} < 0) by con-
sumer 4, her portfolio of securities can be written as

= (a{,‘..,a;().
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The portfolio ai costs q- ai = K q;- aj, in period 0 and returns r, - ai =
& - aiin state s,
In a financial market system with K ordinary securities, a consumer’s choice
- problem takes the following form:

MaxV(x) st

x,al
Po-X+q-al < po-ah
P X S pyr @it al forallse S

xi 2 0.

The consumer’s problem in a financial market system with ordinary secur-
ities is similar to the problem in a system with a complete set of Arrow secur-
ities. The only obvious difference is the fact that the pay-off of a portfolio of
Arrow securities in state s was given by ai, the quantity of the single Arrow
security that paid off in state s, while with ordinary securities, the pay-off of the
portfolio is r,- ai= TK | ry- aj, since all securities may pay off a positive
amount in state s. In both cases, the return on the portfolio determines the
total amount of purchasing power transferred in favour of the consumer
(r, - ai > 0) or away from the consumer (r, - ai < 0).

The similarity of the two problems suggests that the two systems may be
equivalent, in the sense that both provide the same trading opportunities for
consumers. We now investigate conditions under which such an equivalence
holds.

For an asset market system of ordinary securities to provide the same trad-
ing opportunities as a financial market system with a complete set of Arrow
securities, it must be possible to find for each portfolio of Arrow securities
4= (dy,...,ds) a portfolio of ordinary securities that yields the same vector of
state-contingent pay-offs as the portfolio d. Clearly, it suffices to show that, for
each Arrow security s, there is a portfolio of ordinary securities a(s) that pays
off one unit in state sand nothing otherwise. Then, to reproduce the pay-off of
the portfolio 4, the consumer needs to buy 4, units of the portfolio a(s) for
s=1,...,S.

To find the portfolio a(s) = (a,(s), . . . ,ax(s) ), one needs to solve the equa-
tion system:

n-a(s)=0,
A0S B
rea(s) =1,
rs-a.(s)=(.).
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Whether or not a solution exists to this linear equation system depends on the
return matrix R whose row vectors are the coefficients of the equation system.
A necessary condition is that there are at least as many assets as there are states
of the world, K> S, because the number of assets determines the number of
unknowns in the equation system and the number of states determines the
number of equations.

If there are S Arrow securities, one has to solve S equation systems of this
type to determine the S pay-off-replicating portfolios a (s). The following well-
known lemma from linear algebra gives the necessary and sufficient condi-
tions for the solution of all these equation systems and, as a result, for the
equivalence of a system of ordinary security markets and a complete set of
Arrow securities. Note that Arrow securities are the special case of ordinary
securities where ry = 1 for k= sand ry = 0 for k # s holds. The return matrix
for S Arrow securities is therefore the S S-identity matrix:

LEMMA 3.1. Suppose Risan SxSmatrix of full rank. Then there exists an in-
verse matrix R-! such that R- R = R.

Lemma 3.1 is a standard result from linear algebra. The ‘full-rank condition’
tells us that, if there are at least as many ordinary securities with linearly inde-
pendent pay-off vectors as there are states, it is possible to combine the pay-
offs of ordinary securities so as to synthesize a set of S Arrow securities. Each
column of the matrix R-! is one of the portfolios a(s) which, given the pay-offs
of the K securities in the matrix R, generates pay-offs identical to one of the
S Arrow securities. This condition provides us with a characterization of com-
pletenessin a system of ordinary securities markets.

DEFINITION 3.3. A set of ordinary securities is said to be complete if there
are at least as many ordinary securities whose pay-off vectors are linearly inde-
pendent as there are states, i.e. K> S where K is the number of linearly inde-
pendent securities.

The following example shows how one can construct portfolios of ordinary
securities that replicate the Arrow securities.

Example 3.3. Let there be two states and two ordinary securities with con-
tingent pay-offs as given in the following matrix:

r=[3 1)

Since the determinant of R is non-zero, the inverse matrix exists:
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Thus a portfolio (a,, a,) = (-1/13, 5/13) synthesizes the pay-off vector from
the Arrow security (1,0). Similarly, a portfolio (a,, a,) = (3/13,-2/13) synthes-
izes the pay-off vector from the Arrow security (0, 1). Figure 3.7 illustrates this

result. [ ]
X2
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Fig. 3.7

Sinceit is possible to synthesize both Arrow securities by combining the two
ordinary securities in appropriate proportions, it must also be possible to cre-
ate any pattern of pay-offs across states that can be created by combining
Arrow securities. This is illustrated in the following example which resumes
Example 3.3.

Example 3.4. To obtain the contingent pay-off vector (5,2), one purchases 5
units of Arrow security (1,0) and 2 units of Arrow security (0,1). Since the
Arrow securities are not traded, one must purchase portfolios of ordinary
securities instead.
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Since the portfolio (a;, a,) = (—1/13, 5/13) produces Arrow security (1, 0)
and portfolio (a,, @,) = (3/13,-2/13) produces Arrow security (0, 1), to obtain
the pay-off vector (5, 2), one forms the compound portfolio:

(a4, d;) =5-(a;, @) +2-(a,a)

=(5-a+2-a,5-a,+2-a)

- (,1_ ﬂ)

IAVEREY
Applying these weights to the original pay-off matrix R confirms the result. m
Example 3.4 shows how Arrow securities simplify the construction of port-
folios which replicate the pay-offs of ordinary securities. In general, whenever

there are exactly Slinearly independent ordinary securities, K = S, to achieve a
pay-off vector r = (1}, ...,rs), one forms the portfolio
i -
Ay
& Gk T
Rl-r= .
i ) >
ag e 1y
& sk Tk
where 4, is the skth element of the inverse matrix R-1. Notice that a column of
the matrix R-1, (@, . . . ,4s3), is the portfolio a(k) that replicates the kth Arrow
security. When applied to the matrix of K = Sordinary security pay-offs, these
weights yield the pay-off vector:
R-(R'-r)=(R-RY)-r=R-r=r.

This section has d rated the equivalence of a fi ial system based
on a set of S linearly independent ordinary securities and a financial system
based on a complete set of Arrow securities. The following section considers
the case where there are fewer ordinary securities than states K < S.In Chapter
4, we study the case of redundant securities K > S. The latter case provides the
background for many asset pricing results in modern finance.

3.6 Incomplete Markets

The previous sections have shown that, when there exists a set of K= S Arrow
securities or K = S ordinary securities with linearly independent return vec-
tors, financial markets are complete, in the sense that trades between any two
date-state pairs at appropriate rates of exch are possible. With compl
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financial markets, competitive equilibria are Pareto optimal. In this section, we
consider the q of incompl, of fi ial markets, i.e. where
K<S.

The analysis of this case is complicated by the fact that diagrammatic ana-
lysis is nearly impossible because the smallest economy in which one can dis-
cuss incompleteness of markets in a meaningful way comprises two states in
addition to the asset trading period 0. Thus, even if one considers a single
consumption good in each state only, a consumer’s choice will be amongst
three variables. A general analysis of incomplete market systems therefore re-
quires rather abstract methods. The exposition in this section draws heavily on
an example to illustrate the two most important aspects of incomplete market
systems.

If financial markets are incomplete, then:

(i) trade between some date-states is not possible, there are ‘missing’ mar-
kets, and Pareto optimality of an equilibrium fails to hold; and

(ii) market equilibria are indeterminate, in the sense that the equilibrium
allocation depends on prices which can be chosen arbitrarily.

Example 3.5. Consider an economy with two states and one consumption
good,i.e. S = {1,2} and L = {1}. Suppose that there is just one asset in this eco-
nomy which pays (r}, r,) in the two states, respectively. Consumers are en-
dowed with (,wi,@}) of the consumption good in period 0 and states 1 and
2, respectively, and their preferences are represented by a utility function
Vi (xxf,xd).

Denote by a the quantity of the asset bought or sold by consumer iand let g
be the unit price of the asset. The consumer’s choice problem then becomes:

Choose (x4,x{,x5,a) to maximize

Vil xdxh)
subject to: Po- %+ q-ai=py- wh
px=p@i+n-d

P Xy=py @4y
%20, 20,x20.
In writing the budget constraints as equalities it is been assumed that the
consumer has monotonic preferences in the single consumption good in each

period. Notice that markets are incomplete because there is one asset but two
states.

Solving the first budget constraint for a, and substituting the result into
the second and third budget constraints (dropping the superscript i for
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convenience), leads to the following description of all possible choices of state
contingent consumption:

Pl'xx+(%)'P0‘X0=P|'“’1*(%)'Po'%
Pz'xz'*(%)'Pn"‘o=Pz'wz+(%]'Pn'wo
X 20,%20,x,20.

‘We can express the relative price of consumption in state sin terms of period
0 consumption as P, = (p/p,) - (g/r,). Now the set of feasible consumption
bundles (xp, X}, X;) can be written more compactly as:

Pix;+x=P - @+ @
Prxy+xg= Py 0 +
%20,%20,x20.

Unlike the case of complete markets, it is not possible to collapse multiple
budget constraints into a single budget constraint by substitution. The set of
feasible consumption allocations is therefore more heavily constrained in the
case of incomplete markets than in the case of complete markets. In particular,
it is not possible to exchange state 1 claims for state 2 claims directly; the mar-
ket is ‘missing’ State 1 claims and state 2 claims can be exchanged for period 0
claims separately, but not directly for each other, since the market does not exist.

The upper panel of Figure 3.8 depicts the two budget constraints as separate
planes in the non-negative orthant of (xp, x,, x,) space. Only allocations which
lie in the intersection of these two planes, illustrated separately in the lower
panel, are feasible.

To see how the incompleteness of markets constrains the consumer’s choice
set, consider the feasible set for the same example when asset markets are com-
plete. For this purpose, let us assume that there are two assets with return vec-
tors (ry;, 1) and (ryy, 1), respectively. The following budget constraints
determine the ¢ ’s feasible ption allocation in this case:

Po %ot gy @+ gy a=po- Wy,

X =p@tngcatnga

P X% =Py Oty a4ty
X20,%20,%20.

Using any two of these three equations to solve for 4, and a,, one can reduce the
system to a single budget constraint as follows:
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Prxitxo=Pran+ay

Proytao=Praptan

X

Fig.3.8
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Q +Qx+x=Q 0+Q o+
%20,%20,x,20,

where

Q ={{ri/a - rala) o Hl(ida) - (nala) = (rday) - (ranfa)] - pol
and

Q= {[’12/‘11— ’11/41] ‘Pz} / {[('21/‘71) - (rolgy) = (rulqy) - (’22/‘12)] 'Po}-
Figure 3.9 shows the set of state-contingent commodities available to a con-

sumer under this budget constraint.
Comparing Figures 3.8 and 3.9 illustrates how incompleteness of financial

markets reduces the set of feasible exch available to s.Ina
world of complete markets, c can exct claims contingent on any
o
Q
QuQ0,+0,0, +@,
/' %
o
@, 2

Fig.3.9
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one state for those contingent on any other at a fixed market-determined rate.
There are no ‘missing’ markets.

To see that a competitive equilibrium with incomplete markets is not Pareto
optimal, note that, for any two consumers i, j, the following two relationships
hold in equilibrium:

MRS}, = P = MRS}, and MRS) , = Py = MRS},
where MRS} , denotes the marginal rate of substitution for consumer i be-
tween consumption in state sand consumption in period 0. Since the marginal
rates of substitution between states 1 and 2 are not equalized in this equilib-
rium, there is scope for potential Pareto-welfare improvement.

By contrast, an economy with complete markets will exhibit the following
relationship in competitive equilibrium for all consumers i, j:

MRS}, = Q; = MRS}, and MRS}, = Q; = MRS}, and
MRS; , = Q//Q; = MRS ,.

With relative prices and marginal rates of substitution equalized in all markets
for all consumers, there is no room for further welfare improvement and a
Pareto optimum is achieved. [ ]

The fact that incompleteness of markets rules out certain types of exchanges
plays havoc with the determination of competitive equilibrium. In particular,
there is insufficient information to pin down a unique set of relative prices. An
equilibrium allocation can generally be found but will depend on the choice of
numeraire. Hence, the equilibrium allocation will not be determined
uniquely.

In general, there are L goods markets in each of the Sstates and in period 0.
Hence there are (S + 1) - L commodity markets and K asset markets that must
clear in a general equilibrium. There are accordingly (S+ 1) - L¢ i
prices, (Poys - - - »Pors + - - »Psys - - - »Pst)» and K asset prices, (qy, . . . ,qx), which must
be determined in equilibrium. However, given that there are (S + 1) budget
constraints faced by each consumer, there are only { [(S +1)-L+K|-(S+1)
independent market-clearing conditions to determine [(S+1)- L+ K|
prices. This leaves (S + 1) prices indeterminate.

Note that even in a pure exchange equilibrium without uncertainty, where
consumers face a single budget constraint, there are only L — 1 independent
market-clearing conditions to determine L commodity prices. One can how-
ever normalize any one price to any number without affecting the equilibrium
trades. This raises the question of how many prices can be normalized in the
incomplete market economy without affecting the equilibrium allocation of
goods.
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Example 3.5 (continued). Take the case of incomplete markets, and suppose
there is an equilibrium price system (P, P P2 ) and, for each consumer i, a
corresponding allocation (5, xi’, x3', @

Let Py = (pi/py) - (4/r)) and Py = (p,/po) (q'/r) be the relative price ratios
which determine consumers’ budget sets in (xg, X;, x;) space. As long as these
ratios remain unchanged, each consumer demands the same real allocation
(x3', xi', x3") in equilibrium. Hence, any system of nominal prices which leaves
Pj and P; unchanged is also an equilibrium price system.

For given (r,, r;), one can choose arbitrary prices (p,, q) and find an alternat-
ive equilibrium price system (py, p;» p», q) without changing Pj and P;. Given
equilibrium values of P and P, the system

[Por (Py+ po~ /), (Py~ po - 12/),4)
isan equilibrium price system for any (py,q). Thus two of the four prices can be
normalized without affecting the equilibrium consumption allocation. Any
further normalization will affect the consumer’s budget planes, however.

To see that further normalization is required, note that there are three bud-
get constraints and four market-clearing conditions. This leaves only one inde-
pendent market-clearing condition to determine the equilibrium values of the
two remaining prices. One can choose either p, or p, arbitrarily, and solve for
equilibrium by choosing the other price appropriately. But different choices of
p) (or p,) lead to different equilibrium consumption allocations. [ ]

In general, one can normalize the prices of assets (g, ...,q) and the price of
one c dity, for it y 1 in period 0, py,, without changing
the equilibrium allocauon This leaves [(S + 1) - L- 1] prices to be determined
by {[(S+1)- L+ K] - (S + 1)} independent market-clearing conditions.

The number n=[(S+1)- L-1]={[(S+ 1) - L+ K] = (S+ D)} = (S-K)
is called the degree of indeterminacy of the incomplete markets system. It indic-
ates the number of prices which cannot be determined by the equilibrium
conditions and which must be chosen arbitrarily, thereby affecting the equilib-
rium allocation. In Example 3.5, S = 2 and K = 1 and hence n = 1; either p, or
P, must be chosen arbitrarily, and the equilibrium allocation influenced ac-
cordingly.

If financial markets are complete, S equals K, and the degree of indetermin-
ancy, n, is zero. In this case, there are as many independent market-clearing
conditions as there are relative price ratios determining the slopes of con-
sumers’ budget planes.

Example 3.5 (continued). Take the case of complete markets and suppose
there is an equlllbnum pnce system (pp, pi» P 41> 43) and a corresponding
allocation (x5, xi', x3, ai’, a3') for each consumer i.
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Aslong as the relative price ratios Q; and Q; defined by these prices remain
unchanged, consumers will find their allocation (x3', xi', x3) optimal. Hence,
any price system that maintains Q; and Q; is an equilibrium price system for
an appropriately chosen asset allocation (aj’, a3).

A brief inspection of the defining equations for Q; and Q; reveals that one
can choose the asset prices g, and g, and one of the goods prices, say p,, arbit-
rarily and still find prices p, and p, that leave Q| and Q; unchanged. No further
normalization is necessary. Since there are five markets in this case, and three
budget constraints, two independent market-clearing conditions remain to
determine the two equilibrium price ratios Q} and Qj, and there is no in-
determinacy. [ ]

The reason why incompleteness of financial markets leads to some arbit-
rariness of the equilibrium exchange ratios is the assumption that financial
securities pay off in purchasing power rather than in a numeraire good. Thus
securities do not specify the good in terms of which settlement of promised
transfers must take place.

Choosing a numeraire commodity in each state if assets pay off in purchas-
ing power is equivalent to determining the good in which settlement of trans-
fers must occur. To see this, assume for example that securities pay off in a
particular good in each state, say commodity 1. Budget constraints in the states
s=1,...,S, then have the following form:

Pit X% S Pyt @)+ py - (1, a). (3.1
On the other hand, if securities pay off in purchasing power, as we have as-
sumed throughout this chapter, and one normalizes the price of commodity 1

in each state to 1, then the budget constraint in state s would take the following
form:

X L

ot e S 0+ Sp it (32)
Clearly, the consumption possibilities in each state s are identical whether
assets pay off in commodity 1 (budget constraint (3.1) ) or whether they pay
off in purchasing power and with commodity 1 as numeraire (budget con-
straint (3.2) ). To convince yourself of this fact, just draw a diagram of the two
budget constraints for the case of L = 2.

Choosing a numeraire in each state makes the equilibrium allocation deter-
minate. Such a choice fixes one price in each state plus one price in period 0
and, therefore, reduces the number of prices to be determined in equilibrium
to (S+1) - L+ K= (S + 1) which is equal to the number of independent mar-
ket equilibrium conditions. Thus, if assets pay off in a numeraire commodity
rather than in purchasing power, or equivalently if a numeraire is chosen in
each state, then all relative prices will be determined in equilibrium, with the
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consequence of a determinate equilibrium allocation, even if markets are in-
complete. The importance of the choice of asset pay-offs for the determinacy
of equilibrium is discussed extensively in the literature under the heading of
‘nominal’ versus ‘real’ assets (Magill and Shafer (1991), 1565-73).

By choosing a numeraire in each state, prices and allocations are determin-
ate in equilibrium whether markets are complete or incomplete. It should be
clear, however, that specifying the commodity in which assets have to pay off or
choosing a numeraire in each state s = 1,...,S, is not without consequence for
the equilibrium allocation. If markets are incomplete, choosing commodity 2
rather than 1 as the good in which assets pay off leads to different consumption
possibilities for consumers in equilibrium. This would not be true if markets
were complete.

The choice of numeraire matters if markets are incomplete but is irrelevant
if markets are complete. This is the most important message to emerge from
the analysis. Thus specifying that a security should pay off in US dollars rather
than Australian dollars will affect the insurance possibilities provided by the
financial market system if markets are incomplete but would have no effect if
markets were complete.

Notes on the Literature

Classic statements of the theory of contingent claims may be found in Debreu
(1959, ch. 7) and Hirshleifer (1970, ch. 9). The original paper in which the
notion of Arrow securities was proposed is Arrow (1964), an English trans-
lation of an article first published in French. A comprehensive though highly
technical discussion of incomplete markets is found in Magill and Shafer
(1991).

Exercises

1. Consider an economy with one commodity in each state and two consumers,
i= 1,2, with preferences satisfying the expected utility hypothesis. Consumer 1 is
risk-neutral and consumer 2 is risk-averse.

There are two possible states in regard to the consumers’ endowments: either
consumer 1 gets an endowment @' = 6 and consumer 2 obtains w?* = 4, or con-
sumer 1 gets an endowment @' =3 and consumer 2 obtains w? = 2. Both
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consumers agree that the probability of the state with an aggregate endowment of
10 is0.25.

(a) Draw an Edgeworth-box diagram of this economy. Is there aggregate
uncertainty? Would consumers want to insure each other?

(b) Explain what contingent contracts are and derive the equilibrium price
ratio of these contingent contracts in this economy.

(c) Will there be complete insurance in an equilibrium of the contingent
contract economy? Explain under what conditions complete insurance results
in a contingent contract economy.

(d) Give an example of an asset market system that would allow consumers
to obtain the same trading opportunities as they have with contingent mar-
kets.

(e) Discuss the importance of information about the states in an economy
for the feasibility and Pareto optimality of trade.

2. Foran economy withI = 2,L = 1,S = 2 and no aggregate uncertainty, show the
following propositions. Support your formal argument with a diagram.

(a) If both agents have preferences that satisfy the expected utility hypo-
thesis and if the players hold identical beliefs about the probability of the
states, then the equilibrium prices will be proportional to the probabilities of
the two states.

(b) If agents have utility functions of the type

ui(x),%,) = min{x;,x},
where x,, s = 1,2, denotes the state-contingent consumption, then they will in-
sure each other completely, irrespective of their beliefs about the probabilities
of the states.

(c) If the players have von Neumann—Morgenstern utility functions but
player i believes that state 1 occurs with probability 7; with 7, > 7,, then the
equilibrium price ratio p,/p, will satisfy

/(1= m) > pi/p, > ml(1 - my).

3. If agents can trade in contingent contracts, then, in equilibrium, the endow-
ments in every state plus the contracted trades form a Pareto-optimal allocation.
Show that this statement is true. Draw a diagram to illustrate the argument.

4. Suppose that a consumer with a utility function u(xg,x,, . . . , xg) on state-
contingent consumption vectors x, s =0,1,...,S, faces S+ 1 budget constraints
which require her expenditures on consumption goods in each state to be less or
equal to her wealth available in states = 0,1, ...,S, (Wo,W,, ..., Wy).
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(a) Derive the indirect utility function Wy, W,, ..., Wy) of this consumer
which shows the maximum utility she can get given her endowments and her
wealth transfers.

(b) Show that the indirect utility function is strictly increasing in the
wealth variable W,, s =0,1,...,S, if the consumer’s direct utility function
u(Xg,%y, - - - ,Xg) is strictly increasing in at least one consumption good in each
state.

5. Consider an economy withL=1,5S=2.
(a) For K = 2, show that a consumer’s budget constraints,
PorXot Q-+ gy ay=po- K
Prx=p Rt atnyanpy%=py it catna
can be collapsed into one budget constraint,
Q x+Qn+%=Q X{+Q %+

Determine Q, and Q,.
(b) For K = 1, show that the consumer’s budget constraints,

P Xt @@ =po-Zpp X =Pt anpy H=pp Bt a,
can be collapsed into two budget constraints,
Pixi+x%=P Xi+XPx+%=PHt%

Determine P, and P,.
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4

ARBITRAGE AND OPTION
PRICING

This chapter deals with two fundamental insights about the relationship among asset
returns. First, an asset may have state-contingent pay-offs that can also be obtained
by forming an appropnate portfolio of other assets. Indeed, if markets are complete,
then the stat returns of any additional asset can be synthesized by aport-
folio of the existing assets. Since perfect substitutes must command the same price,
the price of any asset must equal the price of a portfolio that replicates its returns.

The possibility of arbitrage imposes constraints on asset prices. In particular, as the
first section of this chapter will show, the requirement that prices must not allow for
arbitrage possibilities imposes on stat ingent discount prices. If
markets are complete, then these constraints will determine the state-contingent dis-
count prices ly. In this case, staty i discount prices are the prices of
the Arrow securities.

A second important insight concerns the fact that repeated trading of an asset creates
a larger set of possible returns. If states are identified with the different possible re-
turns an asset may have at a date, then a much larger number of returns, i.e. states,
will emerge once the asset is traded repeatedly. To replicate the large number of pay-
offs after several rounds of trading, one needs a portfolio with no more securities
than the asset has pay-offs in the base period. A combination of this idea and the ar-
bitrage principle has been applied extensively to price derivative securities, includ-
ing, for example, stock options. Section 2 introduces this method.

4.1 Arbitrage

The last section of Chapter 3 studied the case of incomplete financial market
systems. In this section we turn to the case where there is a greater number of

17



Symmetric Information: Markets

assets than there are states, K > S.In this case, some assets are redundant in the
sense that they provide the same pay-offs across states as one could obtain
from combining other assets into an appropriate portfolio. One of the funda-
mental principles in economics is the so-called law of one price which states
that two homogeneous goods must sell at the same price. Hence, one would
expect an asset with state-contingent pay-offs equal to the state-contingent
pay-offs of a portfolio to be traded at the same price as the portfolio. If this
were not the case, a consumer could buy the cheaper of the portfolio or asset
and sell the more expensive of the two in exchange. Since the asset has the same
pay-off as the portfolio in every state, payments from this transaction would
cancel each other in every state. The difference between the price of the asset
and the price of the portfolio would therefore represent a riskless arbitrage
gain. The arbitrage principle is the application of the law of one price to finan-
cial assets.

The possibility or impossibility of arbitrage depends on the relative prices of
assets. Arrow securities play a special role. If there are more ordinary securities
than states, one can find portfolios that replicate the Arrow securities and the
prices of Arrow securities are determined uniquely. Hence one can use Arrow
security prices to price any other asset in the economy. This feature of a finan-
cial market system is a mainstay of theoretical asset pricing in finance.

As the previous chapter has shown, if asset markets are complete, that is, if
there are at least as many linearly independent ordinary securities as there are
states, it does not matter in which form the assets actually pay off. For the ex-
position of the arbitrage principle in this section, one can therefore abstract
from trade in the spot markets of each state and of period 0 by simplifying the
consumer’s problem. The idea is to split the consumer’s choice problem into
two parts:

1. Given goods price vectors in the various states (py,p; . - - ,ps), the optimal
consumption plan is determined for arbitrary nominal wealth levels W,
W,, ..., Wby solving the following problem:

Choose  xi= (x§,xj, . .. ,x) to maximize Vi(xi)
s.t. PoXp+ Wy < po-
P Xi S pr @i+ W foralls=1,...,8
x§ 2 0,x{ 20,...,x 2 0.
The solution to this problem yields an indirect utility function
V(W,,, Wiseo o, Ws iy« oPs)

which depends on the wealth variables (W,, W,, ..., W;s) and the goods prices
(PosP1s - - - » Ps)- It is not difficult to show that this indirect utility function is
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strictly increasing in W, s=1,...,S, and strictly decreasing in W, if the ori-
ginal utility function V(-) is strictly increasing in at least one good in each state
and at date 0. The wealth variables (W, W,, ..., W) can be interpreted as nom-
inal wealth which is available for consumption in addition to the wealth from
initial endowments if W, > 0. Otherwise it represents a liability that must be
settled out of the wealth from the initial endowment in the respective state.

2.1n the second stage, the portfolio choice problem can be considered separ-
ately, by studying the following problem:

Choose ai = (aj, ...,aj) to maximize
V(Wo, Wy, ., Wss pooPrs - -« 1Ps)
s.t q-ai=W, and
W,=r,-ai  foralls=1,...,S.
The analysis can now be carried out easily in terms of the second-stage

problem of pure portfolio choice. To facilitate diagrammatic exposition, we
consider only two states S = {1,2} and take Wj as fixed.

Example 4.1. Assume that there are only two states and two ordinary secur-
ities with conti pay-offs (in ‘purchasing power’ or ‘wealth’) as given in the
following matrix:

R=['“ ’lz]

2

Taking W, as given, a portfolio a = (a,,a,) must satisfy the constraint
Q@+ gy a=W,

and will yield the wealth levels
Wi=rn-a+rn;-a,
Wo=ry-a+ry-a,

Figure 4.1 shows the state-contingent wealth combinations that can be
achieved by choosing portfolios with value W, in period 0. Point A is the
wealth combination achieved if all of W, is spent on asset 1. Point Bis obtained
by spending all of W, on asset 2. It is not difficult to check that points on the
line between A and B correspond to portfolios with positive quantities of both
assets, while points to the left of A imply short selling of asset 2 and points to
the right of Bhave a, negative. The equation of the line through A and B is ob-

tained by solving the last two equations for a, and 4, and substituting these
values into the first equation:
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A

W

0| ay, fay, Lnyy,

/ a9 a9 @'

W, = % r”] Wo+ & Wy,
|

where
[’u ’u] [’zz ’zl]

The line through A and Billustrates the case where { < 0 since

2 T T _ '21
4@ 9 ] =0and [ =0

If { < 0, an agent must trade off contingent consumption in state 1 against
contingent consumption in state 2 at a fixed rate in order to remain within the
feasible set of state- i wealth combinations. Note that plete in-
surance is possible since there is a portfolio, where the 45°-line intersects the
line through A and B, which yields the same wealth in both states, W, =

If asset prices change, the position of the line of feasible state-contingent
wealth combinations changes too. Assume, for example, that the price of asset
2 falls to g5, while the price of asset 1 remains unchanged. If all of W, were in-
vested in asset 2, the state-contingent wealth combination Cin Figure 4.1
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would be realized. Note that this wealth combination lies on a ray from the ori-
gin through point B. Thus, changes in the price of asset 2 will move the wealth
combination obtained from holding all wealth in asset 2 up and down lhxs ray
Since we keep the price of asset 1 the wealth bination ob

from investing exclusively in asset 1 will remain unchanged at A.

By forming portfolios with wealth Wj, state-contingent wealth combina-
tions on the line through A and Ccan be obtained. Notice that the slope of this
line is positive now, { > 0, since asset 2 offers a higher pay-off per unit of
wealth invested than asset 1 in both states, i.e.

iz hi
% @

In these circumstances, an agent with preferences monotonically increasing
in wealth would seek to take an unbounded position by short-selling asset 1 in
order to increase without bound his or her position in asset 2. In other words,
the agent would seek to obtain a wealth combination at a point as far to the
‘north-east’ along the feasible line as possible.

The process of selling asset 1 in order to purchase asset 2 and increase wealth
in both states is an example of arbitrage. Since wealth is higher in all states as a
result, i.e. a gain of some sort is guaranteed irrespective of the state, the arbit-
rage is described as ‘riskless’ Note that whether or not an opportunity exists to
make unbounded profit through arbitrage depends upon asset prices, i.e. the
slope of the feasible line.

Clearly a set of asset markets in which riskless arbitrage is possible cannot
achieve equilibrium so long as consumers remain unsated. Furthermore, if an
equilibrium exists in an economy with unsated consumers, arbitrage cannot
be possible. If a riskless arbitrage opportunity were to exist, all unsated con-
sumers would demand unlimited wealth by all offering to sell the same assets
in order to buy the other assets.

The absence of arbitrage (existence of equilibrium) requires ¢ < 0 which
holds if and only if

]>Oand['22 5.

. oM Ty T
either -4--1250 and 2-_2c),

Qo %@ Q9
m_ny I ™y
ol = <0 d =-—=2£>0.
r Q9 an Q9 .

In Example 4.1, asset prices that do not allow for arbitrage could be charac-
terized by a downward-sloping line of feasible state-contingent wealth com-
binations. This geometric characterization of ‘no arbitrage’ prices fails,
however, if there are more than two states. The following definition applies to
economies with an arbitrary number of asset markets and states. Notice that
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this definition can be used whether or not asset markets are complete. Recall

w
(hal( . ):R.,,_

Ws
DEFINITION 4.1.! A price vector for securities q = (g, .. . ,qs) does not per-
mit arbitrage if, for all portfolios a = (ay, .. .,as) with R- a > 0, it is true that
q-a>0.

This definition may be interpreted in the following way. For asset prices to
be ‘no arbitrage’ prices, a portfolio which yields a non-negative return in each
state (and a positive return in at least one state) must have a positive cost when
priced using the ‘no arbitrage’ prices.

For the case where the number of assets with linearly independent return
vectors equals the number of states, Definition 4.1 imposes a constraint on
asset prices only. If there are more assets than states, the return vectors cannot
be linearly independent. Definition 4.1 allows us to determine the asset prices
of the redundant assets pletel ple 4.1 can be used to illustrate this
point. In particular, it can be seen that the prices of the two Arrow securities are
completely determined by the prices and returns of the two ordinary assets.

Example 4.1 (continued). First note that, for any R of full rank, there isa port-
folio a = (ay,a,) such that

mca +ry-a=landry, - a; +ry-a,=0.

The portfolio a, therefore, creates the same return vector as the Arrow security
1. Assume for the sake of argument that, in addition to the two ordinary secur-
ities, there is an Arrow security 1 priced arbitrarily at ,. Figure 4.2 shows the
state-contingent wealth pair that a consumer could obtain by putting all her
initial wealth into the Arrow security as point C. Notice that, at a price of g, the
state-contingent wealth pair does not lie on the line of portfolios of ordinary
securities through A and B. In terms of the ordinary assets, the portfolio (a,,a,)
which creates the return pattern (1,0) of Arrow securit); 1 costs

Q= a+qa
Thus, by investing W, in this portfolio a, the consumer can realize the state-
contingent wealth pair (Wy/4,,0) which lies on the line through A and Bat D.
Consider now the following portfolio of the two ordinary assets and the
Arrow security 1,

! When dealing with vectors, like portfolio returns across states R-a = (r; = @, +, rg- @), R-a>0
meansr,-a20foralls=1 Sand r;- >0 for somes.
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w

Fig. 4.2

(-ay—anb)  with  b=1(q," a; + q;- a)/Gy,
which sells one unit of the portfolio (a,,a,) to spend the proceeds on the Arrow
security. By construction, this portfolio costs nothing, yields no return in state

2, but returns (g, - @, + g, * @,)/, — 1 > 0 in state 1. The strict inequality fol-
lows because

h=q-atqa>q,
i.e. Clies to the right of D in Figure 4.2. The portfolio (-a;,—a,,b) creates non-
negative wealth in each state and positive wealth in state 1, but costs nothing (is
self-financing in finance parlance). The asset price system (4;,4,,4;) does not
satisfy Definition 4.1 and is therefore not arbitrage-free. In fact, it is easy to see
that the only arbitrage-free asset price system is (qy,45,4,)- Thus, arbitrage-free
pricing determines the price of the Arrow security.

In general, any third asset (Arrow security or ordinary security) must be
priced such that the state-contingent wealth pair obtained from investing W,
in it lies on the feasible line through A and B. As a further example, the price of
the second Arrow security 4, is determined in Figure 4.2 by the requirement
that the wealth pair created by spending W, on the second Arrow security lies
on the line through Aand Bat E. ]

ple 4.1 d rates that any redundant security has a price deter-
mined by the non-arbitrage condition. In particular, in a complete market sys-
tem the prices of the Arrow securities will be uniquely determined. The
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following lemma characterizes the relationship between Arrow security prices
and ordinary security prices. The lemma holds without any restriction on the
number of states and assets. However, only if markets are complete can we
conclude that there is a uniqueset of Arrow security prices compatible with the
ordinary security prices.

LEMMA 4.1. A vector of security prices q = (q;; . . . ,qx) does not permit arbit-
rageif and only if there exists a vector

4=(4y-.-,45) >>O0suchthatg=4-R.

PROOF. (i) It is easy to see that the existence of a vector § = (4, ...,4s) >>0
with q = 4 - R precludes arbitrage, since any portfolio a= (a,, . . .,ax) with
R-a>0impliesq-a=(4-R)-a=q- (R-a) > 0because § isstrictly positive
in each component.

(ii) To see that a set of arbitrage-free prices q implies the existence of a vec-
tor G = (4,5 - . - »4s) >> 0 with g = § - R, consider the problem of finding the
cheapest portfolio a= (a, ... ,ax) which satisfies R - a > 0. The cheapest port-
folio is obtained as the solution to the following optimization problem:

Choose a= (ay, ...,ax) to minimize q - a subjecttoR- a>0.

This optimization problem will have a solution if and only if asset prices q do
not permit arbitrage. Furthermore, it is a convex optimization problem
because the objective function and all constraints are linear. Hence, a solution
to the first-order conditions of the associated Kuhn—Tucker problem will be a
solution of this optimization problem.

By the Kuhn-Tucker theorem, a solution of this optimization problem is
characterized by a vector of non-negative Lagrange multipliers for the S con-
straints R - @2 0,say § = (4, .- -,4s), such that the Lagrangian

K S X
L(ﬂ.‘?)E—’l'“+Q'R'ﬂ=—£lqk‘“k+ E]‘?;'[k%’sk'“k]

is maximized with respect to a. This Lagrangian function is differentiable.
Hence, at the optimum, the following first-order conditions must hold:
L(a,g s
aa(—:kq)=——qk+ Eq,» rg=0 forallk=1,....,K

The vector of non-negative Lagrange multipliers § = (4, . . . ,4) satisfies
=214, ryforall k=1,...,K, or equivalently g = 4 - R. Hence, existence
of a vector 4 follows from applying the Kuhn—Tucker theorem to the problem
of finding the cheapest portfolio with non-negative pay-offs in each state.

It remains to show that arbitrage-free prices imply that §,> 0 for all s =
LoiasS.
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If markets are complete, i.e. K2 S and there are at least S assets with inde-
pendent pay-off vectors, then, for any state s, one can find a portfolio a(s) of
the K ordinary securities which replicates the state-contingent pay-off vector
of the Arrow security s, i.e.

R-a(s) =(0,...,0,1,0,...0).
T

s-th position
At asset prices that are arbitrage-free, this portfolio a(s) must be valued as
strictly positive. Hence,
0<qg-a(s)=4-R-a(s)=4-(0,...,0,1,0,...,0) = 4.
Since this is true for all states s, § >> 0 follows, for complete markets.
If markets are incomplete, rank R = K < S, then there are at least K of the
Lagrangian multipliers § = (), ...,4s) strictly greater than zero. Without loss

of generality, assume that the first K multipliers are positive. Let Ry be the sub-
matrix of the first K rows and columns of R. Then

s s
(G- rdK) = RY- (a "Ekﬂ‘h' ’nw-»»QK—Ekﬂ‘?;' 1) = fdicr 15+ ods)

is a linear and continuous function. Since gk 1, . . . »4s) >> 0, there must be
(dks1> - - - »d5) >> 0 such that f{dk, 1, . . . »4s) >> 0. Hence, there also exists 4 >>
0, if markets are incomplete. []

The logic of this lemma is particularly easy to follow in the case of complete
markets. As illustrated in Example 4.1, with complete markets, one can form
portfolios that have the same pay-off as the S Arrow securities and, hence, must
have the same price as these securities. To render arbitrage impossible, these
portfolios must command positive prices. Moreover, as Lemma 4.1 shows,
there is a unique vector of Arrow security prices 4. Though one may be able to
choose different sets of S linearly independent assets from the K securities in
order to construct the Arrow securities, each choice will lead to the same Arrow
security prices §.

The Arrow security prices, whose general existence is guaranteed for
arbitrage-free asset prices, allow us to price vectors of state-contingent pay-
offs and, therefore, any security or portfolio of securities. Thus, any asset with
return vector r= (r,,...,rg) must cost

il),- I

s=1

q-r

This fact enables us to price ‘new’ securities by examining the pattern of
their pay-offs across states. The pricing formulae so derived are known as
‘arbitrage pricing’ results since they apply the principle of ‘no arbitrage’ in
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order to deduce the equilibrium prices of complex securities. The following
example illustrates how one can apply this method.

Example4.2. LetS = {1,2} and let there be two assets with contingent pay-offs
as follows:

ron;
R=|, s ).
Security 1 has a certain (i.e. non-stochastic) pay-off of r while security 2 has a
state-dependent pay-off. Note that the set of two markets is complete. Suppose
a third security is developed which is an option to buy one unit of security 2 at

a strike price of k (a ‘call’ option). Since the option will be exercised only if
ro > k, it has a pay-off vector given by:

ro=max{0,(ro—k)} s=1.2.

We use the ‘no arbitrage’ principle to deduce that the price of the option, q,,
must obey the following relationship:

Mo

Zs Ts0= o

i

1

LetR=“ g]andk=2,then ro= [(2)]

The portfolio a = (0, 1/4) produces the pay-off vector of the Arrow security
for state 1 while the portfolio @ = (1, —~1/4) synthesizes Arrow security 2.
Hence:

4= @4, + g0y =% and Gy =l + 4ol = 4 _%>0’
since (g;,4) is arbitrage free only if 4/g, > 1/g; holds. Thus:
9

Go="T0" G+ 120" §2=2" ‘qf‘*o'(‘in— %)=?-

The price of the option is exactly one half of the price of security 2. [ ]

We conclude this section with the observation that even for incomplete
markets Lemma 4.1 shows the existence of some set of prices 4 that value the
pay-offs of the states. These prices are, however, no longer unique. Still they are
useful to determine whether a ‘new security’ can be priced by arbitrage or not.
For example, suppose that there are two states and one asset with returns (r;,r,)
that is traded at the price of g. By Lemma 4.1, there are strictly positive prices
(41,4,) such that
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q=4i-n+gn
If a new asset with returns (4 - r,A - r;) were introduced, its price would have
tobe
G=41 A ) +d4y A-n)=A-[§-n+d-nl=2-g

if arbitrage is supposed to be impossible. Figure 4.3 illustrates this case.

Notice that, for incomplete markets S = 2 > 1 = K, there is an infinite num-
ber of pairs of positive prices (4,,4,). Two pairs (4,,4,) and (4;,4;) are indic-
ated in the figure. This shows that there are many different possibilities to put
positive prices on state-contingent pay-offs, all of which will make arbitrage
impossible.

4.2 Option-Pricing

The no-arbitrage principle forms the basis of the theory of asset-pricing used
to price derivative securities, including options. An option is a contract that

A
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allows one to buy or sell an object, usually a security, at a future date for a guar-
anteed price. Trade in such contracts allows individuals to insure against the
risk of future price movements. In contrast to futures contracts, options need
not be exercised.

With the increasing number of financial contracts and associated derivat-
ives traded in modern stock markets, the demand for rules to gauge whether
the current price of an asset over- or under-values the future pay-offs associ-
ated with the asset has grown considerably. An important formula for pricing
derivative securities was derived by Black and Scholes (1973). They used an
arbitrage argument to relate the option price to a small number of ‘observable’
variables like the variance of the asset on which the option was written, the
riskless interest rate, and, of course, the characteristics of the option.

There are two types of option contract: calls and puts. A call option grants
the holder the right to buya specified quantity of an asset at a designated price
on or before a nominated date. A put option grants the holder the right to sell
a specified quantity of an asset at a designated price on or before a nominated
date.

The price agreed between the writer (or seller) of the option and its holder
(or buyer) is known as the strike price. The date on or before which the option
may be exercised is the expiration date of the option. American options may be
exercised at any time prior to and including the expiration date. European op-
tions, on the other hand, may only be exercised on the expiration date, and not
before.

Options are one form of derivative security, so named because they repres-
ent a claim to some underlying asset where price is the subject of the option
contract. Options are widely used in the management of risk by banks and
non-financial corporations. They enable firms to control their exposure to the
volatility of asset prices.

Standard option contracts are traded on exchange and are known as ex-
change traded options. The need to price options for the purposes of market ex-
change explains the popularity of the Black-Scholes option-pricing formula.
Most professional traders use computer programs to calculate the ‘theoretical”
price of traded options and seek out opportunities for arbitrage. For a com-
prehensive discussion of the use of options in commercial practice, see Duffie
(1989). In the remainder of this section, we explore the foundations of option-
pricing. We show how one can combine the simple idea of arbitrage-pricing, as
illustrated in Example 4.2, with the insight that a large state space can be
spanned by a small number of assets if repeated trading is possible. This is the

key idea behind option-pricing theory.

Consider a stock currently traded at a price g and expected to return either
1, or r, in the following period. If there are no dividends paid during this
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period, r,will equal the future price of this stock. Hence, r, may be viewed as the
state-contingent future price of the stock. Suppose there is, in addition, a risk-
less bond trading at a price of 1 and yielding a pay-off r, satisfying

n>r-q>rn.

These two assets are sufficient to create a complete set of markets if one con-
siders only two states as relevant, namely the state where the stock has a high
pay-off r, and the state where it has a low pay-off r,. Hence, any other asset
where pay-offs depend only on these two states can be priced by arbitrage.

Consider a European call option that allows the holder to buy one unit of
the stock in the next trading period at the guaranteed price K. Clearly, the op-
tion will only be exercised if the market price of the stock next period exceeds
the strike price. Hence, the option will pay off

ry=max{r,— K,0}  fors=1,2.

Notice the special feature of derivative securities that their pay-offs depend
only on the pay-off of the underlying asset.

By arbitrage-free pricing, this option must trade at the same price as a hedg-
ing portfolio, that is, a portfolio with the same state-contingent pay-offs as the
option. One computes the hedging portfolio by solving the following two
equations for the required units of stock aand of bonds b,

ne=n-a+r-b and rn,=r-a+r-b
One obtains

a= (ig=120) and b= l
(r=ry)

(rye' =" ra)]
(r=r;)

as the hedging portfolio (a,b). The option price q, must be equal to the price of
this hedging portfolio and can be determined therefore as

('1_’2) 1 [(ry- =1, 1))

. b=gq.—le— 2 o o' N2

LR e A )
21 [ne(rg=r)*n,(n-r-q))
r

(r=ry)

Analternative way to determine the option price is to derive the prices of the
Arrow securities first and, then, use the Arrow securities to price the state-
contingent pay-offs of the option. By choosing the respective replicating port-
folios for the Arrow securities, one can easily determine their prices as

a3 ) gy g1 0000
n-r) LG
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The option price can be obtained alternatively as

B 1 (r-q-n) 1 (n-r-q)
9o=q1 Notda o=+ (r,‘ln) et (I,ﬁ,’l)l ‘0

=l_ No (r-q=n)+n, (n-r-q)

r (n—r) i
Deriving the option price in this way is particularly helpful for the following
analysis. Note that, for r, > K> r,,

n,=0andr,=rn-K

Hence,

For the numerical values of Example 4.2, one easily confirms that q, = /2.

4.2.1 The binomial option-pricing formula

A fundamental insight, used extensively in the derivative pricing literature, is
that repeated trading of the same asset with the same basic pay-offs increases
the number of possible different pay-offs and states, provided one considers
states that are distinguished only by the different pay-offs of the asset. If, in
each trading period, an asset has essentially the same returns, then one can
span the much larger state-contingent pay-off space of the repeatedly traded
asset with the same number of assets that are necessary to span the state-
contingent pay-offs in a single period. The important assumption is that all
trading periods offer essentially the same returns.

Consider the case where the stock and the bond are traded in two consecut-
ive periods and where the stock has a return that can take one of only two
values after each trading period. To make sure that trading periods are ident-
ical, assume that no dividends are paid. The return to a unit of stock is just the
future stock price. Furthermore, assume that the stock price after each trading
period will be proportional to the original stock price with two proportional-
ity factors u and d, u > d, that do not change over time. Thus, in any trading
period, if the stock trades at price g, the traders know that it will trade in the
next period at either u - q or d- q. With just one period of asset trading, the
return on the stock would be

n=u-q or rn=d-q.
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The assumption r; > r- g > r, is in this case equivalent to the assumption u >
r> d. Figure 4.4 illustrates the cases where the asset markets open twice and
three times.

Figure 4.4 shows how the number of possible state-contingent pay-offs r,in-
creases as the number of trading periods grows. Because each market period
has the same return structure, one needs only two assets, the stock and the
bond, to replicate the state-contingent pay-offs of any derivative asset. Note
that derivative assets have pay-offs related to the pay-offs of the underlying
asset which are therefore conditional on the same state-space. We now show
how one can derive Arrow security prices for these extended state spaces which
will allow us to price derivative assets.

The Arrow securities of the state-space created by repeated trading have
prices that are simple products of the Arrow security prices in a single trading
period. If trade takes place only once, there are just two possible return states.
We can use the pricing formula derived above to obtain

O R W ()
‘ll—,‘(u,d) an q2—7'(u—d)

after substituting r, = u-qandr,=d- q.

Consider now two trading periods and, with reference to the left tree in
Figure 4.4, Arrow security 3 which pays off one unit in the state where the stock
has the return r;. The following trading strategy will create this return pattern:

(i) Ifthe price of the stock rises after the first trading period, no investment
is necessary in the second trading period because Arrow security 3 has
a pay-off of 0 in this case.

(ii) If the price of the stock falls after the first trading period, then, in the
second trading period, one has to buy a portfolio of stock and bonds
yielding a return of 1 if the stock price increases and a return of 0 if the
stock price falls.

The portfolio that must be bought following a fall of the stock price is the
portfolio that synthesizes Arrow security 1 for a single trading period. Since
prices in the second period must be arbitrage-free, such a portfolio must be
priced at 4,. Thus an investment of ¢, is necessary in the second trading period
after a fall in the stock price, while no investment is necessary following a price
rise.

In the first trading period, one must buy a portfolio of stock and bonds
yielding a return of 0 if the stock price rises and a return of 4, if the stock price
falls. From the derivation of the Arrow security prices in the one-period-
trading case, we know that a portfolio that pays 0 after a stock price increase
and 1 after a stock price fall must be priced at ¢,. Hence, buying 4, units of this
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portfolio costs ¢, - 4, and will create a return of 4, if the stock price falls and
nothing otherwise, as is required for the investment strategy yielding the re-
turn pattern of Arrow security 3. Denote by §(n) the price of Arrow security s
in the case of 1 trading periods. Our argument shows that 4(2) = ¢, - 4, must
hold for prices to be arbitrage-free. A similar argument shows that the price of
Arrow security 5 must be §5(3) = 4, - 4, - 4,. Figure 4.5 illustrates the pricing
of the Arrow securities for these two cases.

Returning to Figure 4.4, it is clear that not all state-contingent returns of the
stock are different. For two trading periods, r, = r; holds and, for three trading
periods, r, = r; = rs and ry = rg = r; holds. This is a consequence of the as-
sumption that trading in each period must have the same proportional

0
0
. 0
@)= dd,
1
a
0
45(3) = @,

Fig. 4.5
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returns. Thus, trading twice leads to three rather than four distinct pay-offs
and trading three times induces four rather than eight distinct pay-offs. In
general, with n trading periods, one obtains n + 1 distinct pay-offs out of 2
possible pay-offs.

Similarly, from Figure 4.5, it easy to see that states with the same stock re-
turns have identical Arrow security prices, i.e. §,(2) = 45(2) = 4, - 4, for two
trading periods and, for three trading periods,

423) = 4:03)=45(3) = d2- 41+ 4
and

44(3) = 46(3) = 4,(3) = 4 4> 4.
Thus, there are only n + 1 distinct Arrow security prices out of a possible total
of 21,

‘With these observations in mind, it is now possible to price derivative secur-
ities like options in the familiar way, by multiplying the returns in each state
with the Arrow security price of that state and summing over all states.
Consider, for example, a European call option on the stock which expires after
ntrading periods and which has a strike price of K. Recall that this option can
only be exercised at the expiry date. Clearly, the option will be exercised if and
only if r,— K2 0 holds. The return of the option in state s is therefore r,, =
max{r,— K, 0}.

Let S(K) := {s € Sl r, > K} be the set of states which yield a stock price higher
than K. Note that this set will be empty if the strike price exceeds the highest re-
turn r,. Denoting by g,(n) the price of this option, which can be exercised after
ntrading periods only, arbitrage-free pricing requires

4) = $0.00) - 1= $,0,0n) - max Ur,- K0}
=s§${K)qS(n) o qu,(n) K

A brief inspection of Figures 4.4 and 4.5 shows that stock returns after n trad-
ing periods are the same whenever the number of stock price increases is the
same. Let S(m) := {s€ S| r,= um- din-m) . g} be the set of states in which the
stock price went up m times (in any order) during the n trading periods. A
standard result of combinatorial mathematics gives the numbers of elements
in S(m) as

ny _ n!
(m) " m! (n—m)!
Consider the following notation for any two integers mand n, m < n,and any
positive real number p that is smaller than 1:
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B(mn,p):= L:) < pme (1= p)a-m,

If p were the probability of drawing a red ball out of an urn containing only red
and blue balls, then B(m | n, p) gives the probability that m red balls will be
drawn in n independent trials. In probability theory B(m | n, p) is called the
binomial distribution. The expected value of this distribution, i.e. the expected
number of red balls, is (1, p) = n - pand the varianceis 62(n,p) = n- p- (1-p).

With this notation, one can simplify the formula for the option price as fol-
lows:

al) =3, 40 5% a(m-K

n
=m§5(x/,,; () - (@)m- (@g)=m] - (um - dn=m- )
-K- 3 () (@) (@,

m25(Klg)

where 8(K/q) := min{m | um - dn-m> (K/q)} = [In u—In d]-' - (In (K/q) -
n - In d] denotes the smallest number of price increases that will make it worth
while for a buyer to exercise the option. Recalling the Arrow security prices in
the one-period trade environment,

it is easy to check that
Gy r+dy-r=1 and §,-u+g,-d=1

holds. One can, therefore, treat p:= §, - uand p' := 4, - r as probabilities and
write the option-pricing formula as

K
a6 =4q- [mg'ark/q) Bl np) =35 [n-)z:a(K/qJ Ble1 , 1]

This is the so-called binomial option-pricing formula as derived by Cox,
Ross, and Rubinstein (1979). If p and p’ were probabilities, then the expres-
sions in square brackets would give the probability of the event that the stock
will experience more than &(K/q) price increases. 5(K/q) is the smallest num-
ber of stock price increases for the option to be ‘in the money’ at the exercise
date n. Denoting by

B(x1n,p):= m)Z:XB(m I'n, p)

the decumulative binomial distribution function, one may write the option-
pricing formula as
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0 =4 BEC) | np)—5 BEE I np.

The parameters p and p' are, however, not probabilities but Arrow security
prices, normalized such that summing them over all states will equal 1. No as-
sumption about the actual probabilities of price increases has been made. Note
that this formula is true only for a European option and for return processes of
the stock and the riskless asset with the following properties: the riskless asset
pays off rafter each trading period, and the stock pays off either u- gord- q
after each trading period.

Itis a well-known property of the binomial distribution that, as the number
of trials increases, it converges to the normal distribution. More precisely, as
n— oo,

Blx| mp) > 1-d(x) = d(x),

where ®(x) denotes the standard normal distribution:

X 1
O(x)=[V2-a-1-]_ 27 dy.

Using this fact allows one, with some further assumptions, to show that the bi-
nomial option pricing formula converges to the Black-Scholes option-pricing
formula

o[/ K+ (p+30)) K ln(q/K)-(p+30?)
9 =9 "’l o —ep“l’l o3 .

Note that pis the interest rate on the riskless asset over the period from the op-
tion purchase to the exercise date. Similarly 67 denotes the variance of the
stock over this period.2

Notes on the Literature

A survey article covering the whole field of security valuation is Duffie (1991).
Dybvig and Ross (1989) discuss arbitrage in detail while the classic articles on
option-pricing are Black and Scholes (1973) and Cox, Ross, and Rubinstein
(1979). Duffie (1989) contains helpful applied material relating to the com-
mercial use of options. Intuitive explanations of the Black—Scholes formula
can be found in most finance textbooks (e.g. Copeland and Weston 1988).

2 Most of the literature uses p- Tas the interest rate to the exercise date and 62 - Tfor the variance
of the stock. Substituting these values for pand 62, respectively, yields the formula in its usual form.
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Exercises

1. Consider an economy under certainty. A firm produces a cash flow X over one
period and there is a single financial asset, a bond, that pays off R.

(a) How much of the bond must a consumer buy to obtain the same cash
flow as she would obtain from owning the firm?

(b) Show that the single Arrow security price of this economy is the discount
factor.

2. A forward contract’ is a commitment between two agents to make a particular
exchange at a particular future date. Suppose that g, is the forward price at time t
for delivery of one unit of a particular asset at a given time T. This means that the
buyer of such a forward contract agrees at time t to receive one unit of the asset at
time T from the seller of the contract in exchange for g, dollars paid at time T
(quoted from Duffie (1989), p.129).

(a) Suppose you can buy the asset at date ¢ in the spot market for the price of
$100 per unit. A loan can-be obtained at an interest rate of 10 per cent per
period. Funds can be saved at an interest rate of 5 per cent. Determine the
arbitrage-free price range for the forward contact.

(b) Suppose that there is a common borrowing and lending rate of 10 per
cent. How many Arrow securities are there in this economy and what are the
prices of the Arrow securities?

3. A ‘European call option’ for the purchase of an asset in period 1 at a strike of K
is traded for a price of q, in period 0. The asset can be bought at a price of s, in
period 0 and will have a price of sy or s, sy > K> s, in period 1. Borrowing and
lending is possible at an interest rate r.

(a) Determine the hedging portfolio for the European call option.

(b) What price must the option have in period 0 to make arbitrage imposs-
ible? How could an agent make arbitrary riskless profits if the option price g,
was less than the arbitrage-free price.

(c) Determine the price of the Arrow securities in this economy.

4. A ‘European call option’ for the purchase of a stock in period 1 at a strike price
of $75 is traded at a price of q, in period 0. This stock can be bought or sold at a
price of $40 in period 0 and is expected to have a price of either $100 or $50 in
period 1. Borrowing and lending is possible at an interest rate r.
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(a) Show that markets are complete by deriving the unique price vector of
the Arrow securities.

(b) Draw a'diagram showing the per-dollar returns of the stock, the riskless
asset, and the Arrow securities.

(c) Determine the hedging portfolio for the call option and indicate it in the
diagram derived in (b).

(d) Give a formal definition of an ‘arbitrage-free price system’and derive the
arbitrage-free price of the option.

(e) Show that for any other price of the option arbitrage would allow an in-
vestor to obtain an arbitrarily high riskless return.

5. Reconsider the two-states ty ts model of ple 4.1.

(a) Determine the replicating portfolio for the second Arrow security.

(b) Assume that asset 1 is safe. Write down the no-arbitrage conditions for
the asset prices.

(c) Using the Arrow security prices compute the price of an option on the
risky asset 2.

(d) Derive the Arrow security prices for the case where the assets are traded
repeatedly for two and three periods.
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5

FIRMS AND FINANCIAL
MARKETS

Models of contingent consumption, such as those discussed in Chapter 3, skirt
around problems that arise with production in such a framework. In this chapter, we
introduce the notion of a firm. In an economy with financial markets where shares of
ownership in a firm can be traded, a firm’s decision about its production plan is at one
and the same time a decision about the pay-offs to an asset, viz. the firm’s equity or
stock.

The first part of this chapter investigates issues arising from the dual role of a firm’s
production decision, i.e. creating return streams for its owners (profits, dividends) in
different states of the world and altering the set of available securities in the economy.
With firms whose stock can be traded, we introduce assets with ‘endogenous’ returns.

There are two main issues which financial economists study in the context of the firm.
The first is the goal or objective function of the firm. In modern economies, where
production decisions in large firms are no longer made by the firm’s owners directly
but rather by managers appointed to run the firm, two important questions concern:
(i) the objective that owners should give these managers, and (n) whether the owners
can agree on a single objective for the firm’s hold:

about the objective function of the firm is important because, without it, there can be
no effective separation of hip and control. In ies with a compl of
markets, delegating authority to a group of managers whose instructions are to max-
imize the firm’s profit is consistent with shareholder expected utility maximization.
This result is known as the Fisher Separation Theorem after Irving Fisher, a famous
financial economist.! With incomplete financial markets, as we shall see, sharehold-
ers will give a common objective for the firm only under very restrictive assumptions.

The second major issue is the existence of an optimal financial structure for the firm.
Modigliani and Miller (1958) shocked the ity of financial ists at the

! Amongst numerous other works, Fisher wrote The Theory of Interest (1930) which laid the foun-
dations of much of the modern theory of intertemporal choice.
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time with their ‘proof” of the irrelevance of the firm’s financial structure, i.e. the mix
of debt and equity claims a firm sells to finance its purchase of inputs. Much of the

prior to the app of the Modigliani-Miller paper had been devoted
to the various principles according to which one might determine the optimal mix of
debt and equity for particular firms. To be told that none of the arguments was valid
was shocking indeed! In this chapter, we present the original Modigliani-Miller
result in a form which relates to the framework we have developed. In doing so, we
again encounter the fundamental role played by the assumption of complete
markets.

5.1 Firms and Stock Market Equilibrium

The firm is the basic production unit. It buys goods as inputs and produces
other goods as outputs for sale, both in period 0 (‘the present’) and in period 1
(‘the future’). Investments are input purchases in period 0 which lead to out-
puts in period 1. Production, like preferences or endowments, can be subject
to uncertainty. Thus the description of states of the world now includes con-
tingencies which are relevant to production, e.g. machine failures, labour
shortages, technical improvements, etc.

A production plan for firm j specifies input-output vectors yj € RL for each
state s € S, including ‘the present’ as ‘state 0’. Each firm is characterized by a
production set Y/ C R(S+1-L which contains all state-dependent input—
output vectors that are technologically feasible. To simplify notation, we intro-
duce the convention that inputs are rep d by negative bers and out-
puts by positive numbers, e.g. the production plan of a firm that uses

* 5 units of commodity 1 in period 0,
© 3 units of commodity 3 in state 1,and
© 1 unit of commodity 3 in state 2

to produce

* 2 units of commodity 2 in state 1,and
© 1unit of commodity 4 in state 2

is written as (omitting the superscript indicating the firm)
7= Gori72) = (GorYorYosdos)s M1y12713%14)s G222 Yana) )
=((-5,0,0,0),(0,2,-3,0),(0,0,-1,1) ).

This convention allows us to write the net pay-out for each input-output
vector given state-contingent prices simply as p, - y, for all states sin Sincluding
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the present state/date 0. As in Chapter 3, price vectors may be expressed in
terms of a predetermined numeraire, say commodity 1. Thus, in the previous
example, for a given price vector

= (posp1sp2) = ((Po1sP02P03P0s)s (Pr1sP12P13sP14)s (P21sP22sPa3sP2s) )
=((1,3,2,4),(1,5,7,3),(1,9,2,3) ),

the following state-depend

plan y:

pay-outs are iated with the production

Po-Yo=1-(=5)=-5,p,-y=2-5+7-(-3)=-11,
Py =3-142-(-1)=1

For given state-contingent prices, the owner of a firm can be viewed as holding
a set of securities with state-contingent returns

{(Po~ YooPr* Yis---oPs ¥) ERS* 1 yi= (yopis. . oys) € Vi)

Choosing a particular production plan j € Y/ introduces a security into the
economy with state-contingent pay-offs

(Po~ Jos Pr- J1s -+ oPs Fs)-

Firms are assumed to be owned by consumers. Denote by o‘j the share of
firm j € J held by consumer i. Shares are percentages of ownership, rather than
nominal claims to a nominal amount. The shares of any firm held by con-
sumers therefore sum to one, X, ;0/= 1. Clearly, some consumers might have
no shareholding in firm j, oj= 0, or there may be a particular consumer i who
is the single owner (shareholder) of firm j, 6" = 1. The market price of firm jis
denoted by ¢/. Notice that the market price of a firm’s share capital equals the
value of the firm, i.e. for the price ¢/ one can buy the firm. Of course, buying
half of the firm, 6; = 0.5, costs 0.5 - ¢/,

There are K financial asset markets, k= 1, ...,K. As in Chapter 3, assets are
characterized by a return matrix.

Ty m
Ri= || = |6y cscssss e
Tl Tol|ermsnisre Tkl

and can be bought and sold at prices g = (q;, . . . ,4) in period 0. Firms may
finance their input purchases in period 0, p, - y§ by selling B{ units of asset k at
price g, thus raising g, - B units of the numeraire in period 0. In exchange,
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firm jhas to repay ry - 3 units of the numeraire in every state s € S. Notice that
the quantities of assets sold by a firm are denoted by positive numbers 3 > 0,
while purchases of assets are represented by negative numbers.2 Firm j’s finan-
cial structure is therefore given by the portfolio of its asset holdings B’ :=
(B> - - - »B¥) which might include debt but not equity. Equity is the right to
participate in a residual surplus or deficit after all other claims on the firm have
been met. A firm’s production and financial plan is thus completely described
by (y,$), a production vector and a portfolio financing it.

Any expenditures in period 0 that are not covered by the proceeds of the
firm’s asset sales, g - % + q - #/, must be financed by the owners of the firm.
Similarly, a surplus in any state s, p, - y,— r, - B, will be distributed to the exist-
ing shareholders. This cash flow from the firm’s operations is denoted by 8 :=

(& 8- .-,8...,00) with
&=po-yW+q-p and &:=p,-y-r-p forall seS.

As in Chapter 3, consumers are characterized by preferences represented by
a utility function over state-contingent consumption bundles

Vi(xi) := Vi(xjxi,....,x), with xj,xieRt forall seS,
by a state-contingent initial endowment
@ = (0h@f - ..,w), with wf wieRL forall seS,
and initial shareholdings

Gii= (6...,6%...,G)).

These initial shareholdings represent the ownership structure of the economy
before trading of shares begins. By trading shares in period 0, this ownership

structure can be changed.

Finally, consumers can buy, aj > 0, or sell, aj < 0, assets on the same con-
ditions as firms. A portfolio of the assets ai := (aj, .. . ,a) and choice of share-
holdings # := (o, . . . ,0}) which gives a consumer a share of the firms’ cash
flows (8',...,&, ...,8") provide the consumer with opportunities to transfer
purchasing power across time and states of the world. The following budget
constraints for consumer i summarize the implications of asset and share
transactions for final consumption:

po-4+q~a‘+_2,6,-"-efspo-m6+.2,6}'(e’+66). (5.1)
3 13
po-xi S prwi+X of-Sj+r,-a forallse S (5.2)
1
2 Thisis opposite to the convention adopted for asset holdings by consumers.
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To complete the description of this economy with firms and a stock market
we need a definition of a ‘stock-market equilibrium’. While our focus will rest
on the appropriate objective function for the firm, at this state, so as to avoid
pre-empting the result, we define a stock-market equilibrium assuming that
the production and financing decisions of firmsare given.

DEFINITION 5.1 (stock-market equilibrium). Consider an economy with
consumers ( V', 0/, (G)c )i and a set of financial assets R. Given a production-
finance plan for each firm (y,8))c), a list of prices (p,4,€¢) and an allocation
(#i,41,67) . constitutes a stock-market equilibrium if

(1) consumers choose optimal consumption and portfolio plans, i.e. for all

consumers i€ [

(%i,ai,67) € argmax{ Vi(xgxi,...,x%) |
Po-¥+d-a+30l-é < py- wi+ Z6i- (6+8)),
sl el
P xi<p,- w;’+_2[a;' <8+ r,-a forallseS},
I3

and if

(2) all markets clear, i.e.

Ti=Yy+Te, Toi=1, IPi=Tai
il e’ el il rIT el

According to this definition of equilibrium, consumers maximize their util-
ity by choosing a consumption plan financed by a portfolio of assets and share-
holdings such that the spot markets for commodities, the asset markets, and
the share markets clear for a given commaodity price vector, a given asset price
vector, and a given share price vector. The equilibrium prices and allocations
depend, however, on the production and financial decisions of all firms.

In the following section, we investigate whether shareholders can agree on
an objective function for the firm. In order to see how the owners of a firm
evaluate their firm’s activities, we wish to determine the effect of a small change
in production and financing plans on a shareholder’s utility. As in Chapter 4,
we define the indirect utility function of a consumer for a given financial wealth
pattern across states and dates.

Notice, however, that the wealth level of period 0 appears on the right-hand
side of the budget constraint. Thus, in contrast to the indirect utility function
in Section 4.1, the indirect utility function here will be increasing in wealth of
period 0. In order to distinguish the indirect utility function of this chapter
from the one of Chapter 4, we will denote it by vi. Let Wibe the wealth of con-
sumer iin state s. The indirect utility function vi( W§,Wj, ..., Wi) associates the
maximum utility that consumer i can achieve from purchases of commodities
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with a given financial wealth pattern (Wj,W(, ..., W) over states and dates.
Formally,

V(WO Wi W = max{ Vil ...x) | p,- xf <
Pt @) + Wis=0,1,...5}.

In this problem, the consumer is restricted to consume out of the wealth
available in each date and state. No savings or insurance possibilities exist. This
indirect utility function vi(Wj, Wi, ..., W{) depends of course on the state-
contingent commodity prices p, as well. Since changes in the commodity
prices are not considered in this context, they have been suppressed here. It is
easy to check that the indirect utility function vi(Wj, Wi, ..., Wi) is strictly in-
creasing in state-dependent wealth if the direct utility function Vi(xi) is strictly
increasing in at least one commodity in each state, and differentiable if the
direct utility function Vi(xi) is differentiable.

In the stock market economy presented above, wealth transfer between
states and dates is possible by trading in financial assets and equities. The
wealth in different states and dates is therefore linked by the following equa-
tions:

W= z_ld-; (el + &) — A)E:qu- aj— '_EZ’G,"~ ¢/, and (5.3)
Wi= Zlo,i- i+ Ekrsk -aj forallseS. (5.4)
13

Maximizing vi( W§, W, ..., Wi) subject to the constraints (5.3) and (5.4), by
choosing a portfolio of financial assets ai and shares o7 is equivalent to the
original consumer problem. In this form, however, it is easier to see how the
firms’ production and financing decisions affect the welfare of a consumer.

A firm’s production and financing decision (y/,’) determines the dividend
stream (84,8}, .., 6%) directly. Changing the production and financing decision
of firm j by some small amount (Ay,ApB’) induces a change in dividends
equal to:

ASi(AYAP) = py- Ay +q- AP and
ASAY,AP) = p,- Ay,—1,- AP forallseS.

Neglecting the impact that a change of a firm’s production and financing
decision may have on equilibrium prices other than its own stock price, a con-
sumer’s evaluation of such a change will mainly depend on the presumed ef-
fect on this firm’s own equity price Aei(Ay,AB’). For small changes of the

production and financing decision of firm j, evaluated at a stock-market equi-
librium, the approximate impact on consumer i’s welfare can be calculated as:
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8= 220 (). (acayiap) + A58y )
o
+ 6l [):S MRS}y - AS(AY,APY) - Aei(Ayh AR}, (5.5)
e

where MRSio= (9vi () / 9Wi) / (dvi (-) / W} ) denotes the marginal rate of
substitution of consumer i between a unit of wealth in state sand in date 0.

The first square bracket within the braces shows that the old shareholder
who is affected by the changed cash flow in period 0, &), gains or loses due to
the induced change in equity value. The second square bracket gives the net
gain to the consumer from holding a share of the firm in period 1, that is the
value of the changes in the cash flows across states in period 1, evaluated with
the marginal rate of substitution MRS}, minus the induced change in equity
value. This formulation stresses the importance of the stock price change
Aei(Ayi,AB’) for a consumer’s evaluation of a firm’s activities. Equation (5.5),
which shows the impact on a consumer’s utility of a small change in firm j’s
production and financing decision, is used below to gauge the desirability of
the firm’s decision for its owners.

5.2 Separation of Ownership and Control

Standard microeconomic models of the firm simply assume that the firm aims
to maximize profit. The relationship between the objective function of the
firm and that of its owners, the shareholder-consumers, is not made explicit.
The same is not true of financial economics, however, in which this issue is
tackled directly.

A famous result in economics, known as the Fisher Separation Theorem,
specifies conditions under which utility-maximizing shareholders agree on
profit maximization as the appropriate objective function for the firm. Thus,
notwithstanding the differing preferences and endowments of shareholders as
consumers, each achieves maximum utility when the firm adopts its profit-
maximizing production plan. When the Fisher Separation Theorem holds, it is
possible for shareholders to delegate control of the firm to managers whose
goal is to implement the profit-maximizing production plan on behalf of the
shareholders. Fisher separation holds under conditions of certainty and, in
appropriate circumstances, also under uncertainty.

Considering the case of certainty first, assume there is only one state, say
state 1, in period 1. Consumers choose optimal consumption and portfolio
plans to maximize utility Vi(xi) subject to only two budget constraints:
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Po- % +‘§qu aj+ Za' e < py- 0f+ Zld',' (ei+8))  for period 0,and
I3

p-xi < p o +_):Io"-- & +k§Kr|k- aj for the only state in period 1.
3

Notice that consumers have K financial assets and ] stocks available to transfer
wealth between period 0 and the single state of period 1. Though dividends of
a firm j, 8}, depend on the production-finance decision of the firm, from the
point of view of consumers, they are fixed like the returns on a financial asset
k, rix. Hence, there are K + Jassets available in this economy. Since there is just
one state in period 1, only one trading ratio, the terms of trade between wealth
in period 0 and wealth in the single state of period 1, needs to be determined in
equilibrium. Therefore, to be free of arbitrage, the prices of the financial assets,
i and of the stock, ¢/, must be such that the rates of return on all assets equal
this trading ratio.

Denote by #the terms of trade between wealth in period 0 and wealth in the
single state of period 1. This rate will be determined in equilibrium. Then all
financial assets, k = 1,...,K, must have a price g, such that r;;/q; = Fholds and
stock prices e/, j= 1,...,J, must satisfy &}/e/ = . If, for any two assets kand ¢,
prices were such that r,,/q; > r,/q, then the consumers could sell asset ¢ short
and buy asset k, earning a riskless profit of (r,,/q;) - (r,,/q,) for every unit of
this portfolio. Thus, because there can be no arbitrage in equilibrium,

nlqe=ndg,= 8jlé=F

for all financial assets k and ¢and all stocks j.

Substituting gy = r,;/ for all asset prices and e/ = 8}/7 for all stock prices,
multiplying the budget constraint of period 1 by 1/7, and summing the two
budget constraints yields:

] 7 i
po- (x- “’n)+ pr (X - of) Siezlo}"(rf“sf""s&)-

This inequality is the intertemporal budget constraint which requires the sum
of the discounted net trade values (the left side of the inequality) to be less than
or equal to the value of the discounted dividend stream earned from the initial
shareholdings. Because it allows a consumer more consumption, it is desirable
for any consumer with monotonic preferences that the discounted dividend
stream Z,E,o" (1/7) - 8 + &) be maximized. This is the case, however, if and
only if each firm j € ] maximizes discounted dividends ((1/7) - &} + &}).

Therefore, all consumers, no matter how diverse their preferences, will agree to
instruct a firm’s manager to maximize discounted dividends, i.e. the present
value of the firm.
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It is worth reconsidering formula (5.5) which shows the effect of a change in
a firm’s production-finance plan on consumer’s utility. In a stock-market
equilibrium, the transformation rate between wealth in period 0 and wealth in
period 1, 7, is determined by the endowments and the consumers’ marginal
rates of substitution:

v () 1
MRSj,= B_V\i")_ BME;)z_i' forallie L

Note that, in equilibrium, all consumers face the same intertemporal market
rate of transformation for wealth 7. The stock price must therefore equal the
present value of dividends in period 1, ¢/ = (1/7) - 8] for all firms j, or arbitrage
opportunities would exist. It follows immediately that a change in a firm’s
production-finance plan, (Ay,AB’), leads to a change in the firm’s stock price
which equals the discounted value of the changes in dividends,

BBy =+ ASAYAR).

The second square bracket in (5.5) therefore vanishes and the total effect on a
consumer’s welfare becomes

Avi= %‘;ﬁ;)~ » Aef(Ayf,ABi)+A66(Ayi,ABj)l
v
= S o [7-aierap) + adepap]

If the marginal utility of wealth is positive, as we assume throughout, then Avi
of a stockholder will increase or decrease as the present value of the firm’s cash
flows rises or falls:

AviZ 0 E - AS{(AyAR) + Asg(Ayi,Aﬁi)] 0,

The utility of a firm’s owner will therefore be maximized if the present values
of the firm’s cash flows are maximized.

Hence, in a world of certainty where there exists at least one firm (and
hence, one asset, the stock of this firm), ownership of the firm can be separated
from control since all owners will agree that managers should maximize the
present value of the firm. This is the Fisher Separation Theorem. The follow-
ing example illustrates the result.

Example 5.1. Consider a two-period economy without uncertainty and with
one commodity in each period. Suppose that there is just one consumer, one
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firm and no financial asset. The technology of the firm is described by a strictly
increasing production function f;

Y= {(on) €R fl-y) = -

Since there is just one commodity in each date, one can normalize the com-
modity prices, py = p; = 1. The firm’s production choice (y,y,) determines the
firm’s dividend stream directly, because there are no financial assets in this
economy: & = yp, 6, = .

Figure 5.1 shows the production possibilities of this economy and indiffer-
ence curves representing the preferences of the single consumer. It shows an
interest rate 7 for which demand and supply of the single commaodity are
equalized in both periods. The stock market is trivially in equilibrium because
there is just one consumer who owns the firm. Note however that the con-
sumer could delegate the production decision to a manager by instructing her
to maximize the present value of the firm ((1/7) - 8, + &). In Figure 5.1, it is
easy to see that the consumer’s intertemporal budget line is further to the right
of the endowment point (@y,®,) the larger the present value of the firm.
Increasing the present value of the firm therefore has a pure wealth effect, shift-
ing the budget line to the right and thereby allowing the consumer increased
consumption. [ ]

Example 5.1 shows that the consumption decision can be separate from the
firm’s production decision if there is a single state in period 1, i.e. no un-
certainty. Separation of ownership and control is possible in this case because
transfers between dates are feasible independently of the production decision

]

o= x,®
W, +y,*=x,

Fig. 5.1
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made by the firm. The following two subsections investigate qualifications to
this standard result when the assumption of certainty is relaxed.

5.2.1 Complete markets and shareholder unanimity about
value maximization

Up to this point, we have neglected uncertainty. We now consider whether
unanimous agreement amongst shareholders about the objective function of
the firm can be expected if there is more than one state in period 1. We will see
that the answer to this question is closely linked to the completeness of the sys-
tem of securities markets. If there are at least as many assets with independent
return vectors, stocks, or financial assets, as there are states of the world, then
our analysis remains essentially the same as that in the case of certainty.

Consider first the case where there is a complete set of financial markets, i.e.
where there are K = S linearly independent assets. Note that a larger number
of assets than states simply requires some assets to be perfect substitutes for
portfolios of others. Arbitrage ensures that the prices of these redundant assets
equal the prices of those assets (or combinations of assets) to which they are
equivalent. The same is true for the shares of firms. With a complete set of as-
sets, they can and must be priced by arbitrage.

If one has a complete set of financial assets, as we assume here, then the
production-finance decisions of firms do not affect the completeness of the
asset market system. If there are fewer financial assets than states but a
sufficient number of firms and stocks, K < § < K + J, then completeness or in-
completeness of the market system depends, in general, upon the decisions of
these firms. Because dividend streams are not exogenous, unlike return vectors
of financial assets, a firm’s production and financing decision may produce a
dividend stream which is linearly dependent on the other assets. Of course, for
K+ J < S, the system of financial markets cannot be complete. This case is
treated in Subsection 5.2.2 below.

Consider, once again, an arbitrary consumer i with the following budget
constraints:

Po- X+ T qi-aj+ Soi <& < py- wf+ TG} - (¢/+ &) for period 0,and
ik 13 I
P X S pr @i+ Toj -8+ T ry-af for all states s € S.
.l ke K
‘We saw in Chapter 4 (Lemma 4.1) that, for an arbitrage-free asset price sys-
tem, there exist Arrow security prices § = (4y,...,45 - . . 4s), i.e. prices for de-

livery of a unit of wealth in the different states of the world. In fact, if markets
are complete, this Arrow security price vector 4 is unique. Since a financial
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asset kyields returns r, = (ryj, ... T - . o7y, its price must satisfy the equation
Q= Zesd, - r. Similarly, a stock jwith dividend stream & = (,...,8}...,8))
must be priced at ¢/ = 34, - 8. Substituting these evaluations into the bud-
get constraint of period 0, then multiplying the budget constraints of all states
s € Sby the respective state-price 4, and summing, yields the following inter-
temporal budget constraint:

Po- X+ X, per X S po 0+ T4 pyr 0+ 6] - (34, 8]+ &).
<5 <5 13 P

These transformations of the consumer’s budget constraints reflect the fact
that, in a complete system of financial markets, any state-contingent pay-off
can be replicated by an appropriate portfolio. Thus shareholdings and the
production-finance decision of a firm matter only to the extent that they mod-
ify the overall wealth of consumers. With a complete set of financial markets, it
is possible to achieve any distribution of wealth across states.

From the intertemporal budget constraint, it is obvious that each consumer
wishes the firm to maximize the value ¥ ,6} - (54, 6} + 8}). Thus all
stockholders, irrespective of their risk-preferences and their beliefs about the
likelihood of the states, will support a policy requiring the firm to maximize
Y esds - 8+ &, i.e. the value of the firm in period 0.

Recall that an Arrow security price §, represents the market rate of trans-
formation between wealth in period 0 and wealth in state s of period 1. If the
system of asset markets is complete, then all consumers face the same unique
market rate of wealth transformation. Hence, consumers will choose a finan-
cial investment policy such that their marginal rates of substitution between
wealth in period 0 and wealth in state s period 1 equal this common market
rate of transformation:

. _ oV () [ oV (- :
MRSy = B_V\(’,') BT(;) =4, forallse Sandalliel
As argued above, arbitrage-free pricing in a complete market system requires
e/ =354, 6. Any change in a firm’s production-finance decision (Ay,AB)
will therefore be evaluated by all consumers i € I as

ASBYAP) = 34, AS{AYIAB) = 3 MRSy - AS{AYAB).
As in the case of certainty, with complete markets, the second square bracket
in equation (5.5) vanishes. A consumer’s utility change is therefore again
proportional to the net present value of the changes in the firm’s dividend
stream:

Av306 [ 34, AS(AYAR) + a8(8y:ap)] 30.
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This is the familiar result which once again allows separation of ownership and
control to occur. Hence, Fisher separation holds under uncertainty, at least so
long as securities markets are complete.

5.2.2 Incomplete markets and shareholder unanimity about
value maximization

Even if there are fewer financial assets than states of the world, K < S, the mar-
ket system may still be complete if there are sufficiently many different firms,
and therefore different types of shares, to fill the gap. For this to occur, firms
must choose production plans which yield state-contingent returns that can-
not be replicated by existing assets. The shares of a firm may not provide a
dividend vector that is linearly independent of the return vectors of the other
assets. The following example should clarify this point.

Example 5.2. Consider the case of two states, S = 2, and one commodity in
each state, L = 1. Suppose there is one asset with return vector r = (r;,r), and
one firm with a technology described by the (implicit) state-contingent pro-
duction function flyg,y,y2) := (51)? + y2 + ¥, The spot market price of the
single commodity can be normalized to unity in each date and state. To sim-
plify the argument, it is assumed that the firm raises all funds for input pur-
chases from its equity holders. Note that, with these assumptions, a firm’s cash
flow is simply (8:51,8) = (o71,72)-

Figure 5.2 illustrates that the production choice of the firm determines
whether there are one or two independent securities in this economy. With two
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Fig. 5.2
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securities, the set of financial markets is complete, while with one, it is in-
complete. The figure shows the transformation curve of the firm’s technology
for a given input vector. The firm’s production plan must lie on the production
possibility frontier (y,)2 + y, + yp = 0. The diagram indicates the return vector
of the financial asset. One unit of the asset yields (r,,r,), i.e. point Cin the
diagram.

It is easy to see from Figure 5.2 that the firm’s production decision will de-
termine whether markets are complete or not. If the firm chooses production
plan A, it creates a cash flow which can be achieved by holding an appropriate
amount of the financial asset, i.e. there is a’ such that r, - a'= y{and r, - @' = y4.
Arbitrage-free pricing implies g - @’ = ¢, since the equity value must equal the
value of the replicating asset transaction. In this case, shares of the firm provide
the same return pattern as the financial asset and markets are incomplete.

By contrast, if the firm chooses production plan B, the cash-flow stream
cannot be replicated by transactions in the financial asset. Consequently, there
are two securities with linearly independent pay-offs and markets are com-
plete. L]
Since the number of securities in a stock-market economy with different
state-dependent pay-offs depends on the production-finance decision of the
firm, it is no longer possible to say whether markets are complete or incom-
plete without reference to the production allocation of the economy. However,
if there are fewer firms and financial assets than states, then markets must be
incomplete. For simplicity of exposition in this section, we consider the case of
an economy without financial assets, K = 0,and with fewer firms than states of
the world J < S. Under these conditions, markets cannot be complete.

Lemma 4.1 from Chapter 4 continues to hold even with incomplete
markets. For a given set of stocks, there is a vector of Arrow securities § =
(41> - --+Gs - - - »45s)- This vector of Arrow securities is, however, no longer
unique. In economic terms, with fewer assets than states, the market can no
longer determine a unique rate of transformation between wealth in any state
of the world and wealth in the current period. In a stock-market equilibrium
where markets are incomplete, consumers will not face common rates of
wealth transformation between states and dates, and their marginal rates of
substitution will no longer be the same:
_¥av0)

J(. J(.
MRS = W) () _

- — % - = = MR
awi | awi *awi | awg = MRS

for some s € Sand some i,j € I.

Since consumers face no common rate of transformation for wealth in dif-
ferent states, one cannot conclude from arbitrage-free pricing that a change in
some firm’s production will be evaluated by all consumers in the same way.
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The change in equity value which occurs in response to a change in production
need not be equal to the evaluation of the changes in the dividend stream.
Hence, with incomplete markets, we can no longer conclude from a stock-
market equilibrium that

Aei(Ayi,ABY) = 3 MRS)y - ASi(AYLABY). (5.6)

In a competitive economy, however, one would expect a stockholder to assume
that equity prices reflect a firm’s changes in cash flows. Equation (5.6) can
therefore be reinterpreted as an assumption about the expectations of a stock-
holder in regard to the induced adjustments of the equity price following a
change in production that changes a firm’s cash flow.

ASSUMPTION 5.1 (competitive price perceptions). Each stockholder assumes
that any change in a firm’s dividend stream, evaluated with her own marginal
rate of substitution, is reflected in a commensurate change of the stock price;
formally, that (5.6) holds.

Notice that different stockholders hold different beliefs about the change in
the stock price that follows from the same change in dividends because con-
sumers’ marginal rates of substitution between wealth in different states gen-
erally differ.> The assumption of competitive price perception implies,
however, that no consumer believes changes in dividend streams produce
gains or losses that are not captured in the equity value.

As a consequence of Assumption 5.1, the impact of a change in a firm’s pro-
duction plan is given once again by the term in the first square bracket of (5.5).
Substituting (5.6) into equation (5.5) yields the following, now familiar, ex-
pression:

v (1)
Wi

Notice, however, that dividend changes are evaluated with a stockholder’s per-
sonal marginal rate of substitution between wealth in different states. With
competitive price perceptions, a stockholder would welcome any production
policy of the firm which maximizes the ‘present value of the firm’s dividend
stream evaluated at her own marginal rate of substitution’ Without complete
asset markets, however, consumers are not able to adjust wealth across different
states, and consequently are unable to choose a financial investment plan that
equalizes their marginal rates of substitution. Thus, in contrast to the case of a
complete set of asset markets, different stockholders will in general evaluate a

Avi=

6] - | ZMRSjg - ASIAY.A) + AK(AY.AB)|.  (57)

3 Such an assumption cannot, of course, be rativnalized: since there can be only one equity value
in final equilibrium. See Grossman and Hart (1979, 300) on this problem.
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firm’s production decision differently, and not agree on a common objective
for the firm. The following example illustrates this point.

Example 5.3. Consider again the economy of Example 5.2 without the finan-
cial asset. With one firm, markets are necessarily incomplete. Assume that
there are two consumers, I = 2, who gain no utility from consumption in
period 0 and who have an endowment in period 0 only. This economy is rep-
resented in Figure 5.3.

Without the financial asset, consumers may want the firm to produce in dif-
ferent points of its production set, say consumer 1 at A and consumer 2 at B.
Since markets are incomplete, there is no way that consumer 1 could transfer
wealth in one state to consumer 2 in exchange for wealth in the other state.
Since these trades are impossible, there is no way in which the two consumers
can equalize their marginal rates of substitution.

Assume now that a financial asset with returns at C becomes available. Then,
together with the trade in equity, financial markets are complete. Consumers
can achieve all trades between wealth in different states and an equilibrium
will determine the prices of the financial asset and the stock such that both
consumers’ marginal rates of substitution are equalized. Hence, they will agree
on the firm maximizing its present value in terms of these prices. This equilib-
rium is indicated by the production point D and the two consumption points
Eand Fin the figure. Notice the common marginal rate of substitution. [ ]

It remains to discuss a special case where the assumption of competitive
price perceptions suffices to achieve agreement among stockholders about

0

I(yorio32) =0

0 &

Fig. 5.3
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value maximization of the firm. This special case which was introduced by
Diamond (1967) is important because it has been used extensively in the ap-
plied economics literature.

Diamond (1967) considers an economy with incomplete financial markets
where shareholders agree on value i ion. This shows that, under spe-
cial assumptions which are outlined below, stockholders need not have equal
marginal rates of substitution between wealth in different states for the evalu-
ation of a firm’s dividend stream. If consumers’ marginal rates of substitu-
tion are equalized between only those states where the firms pay dividends, a
common evaluation is guaranteed, and stockholders will agree on value max-
imization.

To study this case, we specialize our model even further by assuming that
there is only one commodity in each state and date. The price of this com-
modity is normalized to unity. With this specialization, the vector of dividends
is equal to the production vector:

&= (8880 = Gty =4

Recalling our earlier assumption that there are no financial assets, any change
in a firm’s production decision will induce an equal dividend change:

AS(Ay) = Ay, forallses.

Notice that the following definition of equilibrium spanning is therefore
couched in terms of production vectors directly.

ASSUMPTION 5.2 (equilibrium spanning). A stock-market equilibrium
satisfies equilibrium spanning if any change in a production plan of any firm
can be obtained as a linear combination of the equilibrium production plans
of all firms; formally, for all feasible Ay/, j € J, there exists a vector of weights o
=(oy,...,0) such that

Ay =k§lak -k forallseS.

If the assumption of equilibrium spanning is satisfied, no feasible change in
a production plan can create new trading opportunities between states that
were not available in the original equilibrium. Thus, a change in production
will not alter the set of assets available in equilibrium. The following example
shows two economies for which equilibrium spanning is satisfied.

Example 5.4. Assume that there are two states of the world and one commod-
ity in each state, i.e. S = 2, L = 1. Commodity prices are normalized to unity,
and firms’ dividend streams therefore coincide with their production plans.
Consider the following two economies:
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(i) an economy with two firms that have the following technologies:
YA = {(oyuy2) €RXREL(1)2 +y, + yo < 0},and
V8= A{Goyy) €RXRE Ly + (322 + 3o < OF
(ii) an economy where the firm has technology
=10y R xRy =& V() 2= & V) ).

The diagrams below show these two technologies and indicate equilibrium
allocations

P= G B =8B, €= (65599,

respectively.

]

-y

=3

o =3 ¥ on 0 x
Fig.5.4

It is easy to see in the left-hand diagram that any production vector of either
firm can be achieved as a linear combination of the equilibrium production
vectors (y4,yB). The production plan y4 provides an example. Indeed, the equi-

* librium production plans (y4,y8) span the whole (x,,x,)-space so that financial
markets are complete.

Equilibrium spanning does not imply completeness of the financial market
system, however, as the right-hand diagram shows. The technology of firm C
has multiplicative uncertainty. All production plans open to the firm lie along
a ray through the origin and provide its shareholders with the same ratio of
state-contingent returns &,/£,. Though the technology exhibits decreasing re-
turns to scale, it is similar to a financial asset.# Clearly, in this case, all changes

4 Indeed, one can view a financial asset as a special case of a technology with constant returns to
scale and multiplicative uncertainty.
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in production plans create state-contingent outputs that are multiples of the
equilibrium production vector. [ ]
It remains to show that equilibrium spanning does indeed imply unanim-
ous acceptance of value maximization in equilibrium. To see this, recall that in
any equilibrium (with or without complete markets)
Z MRSiy - ji=

must hold for any consumer i € I maximizing utility. Furthermore, from the
competitive price perceptions ption, it follows i di that

Aci(Ay)) = 3 MRS}y - Ayj= T, MRSj, - [T 0t 74]
—Zak ):MR ig - k= Zak ék,

where the equilibrium-spanmng assumption has been used in the second
equation. Now one computes easily,

): MRSy - ASIAY) + ASi(Ay)) = ): MRSiy- Ayl + Ay = 2 ak &+ Ayl

where the second equality follows from the previous consnderanons. Notice
that the right-hand side of this equation is the same for all consumers. Hence,
with equilibrium spanning, all c agree that this expression should be
maximized by firms.3

To see that X, - ¢k + Ayj is the value of the production change in terms
of the equilibrium price system, recall that arbitrage-free pricing implies
that there is a set of Arrow security prices § = (4, .. .4y . - . »4s) such that
T s 4s- ¥ = é whether or not financial markets are complete (Lemma 4.1).
With incomplete markets, however, this vector of Arrow security prices is not
unique and, in particular, it is not true that MRS}, = 4, for all consumers i € L.
Still, in equilibrium, X5 , - ¥ is the present value of the future dividends of
firm j which are equal to state-contingent production in this case. Using the
Arrow security prices implied by the equilibrium price system, one easily cal-
culates:

ek Ay = . k4 Ayl
Elak ek+ Ay Elak Zg‘?; 7+ 8
=Yq.- Lk i=3d.-Ayl i
Zds Zow Ph+ M= 24, By + B
Hence, shareholders will agree on value maximization even if financial mar-

kets are inc lete provided that spanning and equilibrium price perceptions
obtain.6

S This observation was made by Ekern and Wilson (1974) who did not go on to conclude unanim-
ity, however. This last step was left to Grossman and Stiglitz (1980).

6 Grossman and Stiglitz (1980) show that this result does not hold if there are more than two
trading periods.
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‘We conclude this section with the observation that, with incomplete finan-
cial markets, consumers in general disagree about the objective that firms
should pursue. Only very special assumptions guarantee shareholder unanim-
ity in this case. This is a major problem for the modelling of economies with
firms and incomplete financial markets, and accounts for the fact that most
general equilibrium treatments of financial markets neglect firms as inde-
pendent agents.

It is not just a problem for economic modelling. The lack of an agreed ob-
jective for a firm operating with incomplete financial markets helps to explain
the great variety of corporate governance systems one finds in real-world
firms. The advantages of separating ownership and control may not be obtain-
able in the absence of a simple objective of the firm on which all stockholders
agree. Other institutional arr evolve to acc date the conflict-
ing i of different shareholders.”

5.3 The Financial Structure of the Firm

Until the early 1960s, conventional wisdom held that the cost of raising equity
capital for a firm with a given return stream would be lower at low levels of
debt than at higher levels of debt because the risk premium applied by the mar-
ket to the firm’s equity would be smaller. As the firm increased its debt, the
growing risk of bankruptcy would, it was argued, require a higher risk
premium, and hence raise the cost of equity. This argument implies that there
is a level of debt for which the cost of equity capital is minimized, i.e. an op-
timal debt—equity ratio.

The prevailing view was chall d in 1958 by Modigliani and Miller who
claimed that a firm’s financial structure had no effect on its value, determined,
as it was, solely by the firm’s profit stream. Their argument is quite straight-
forward: the financial structure of the firm represents claims on the profit
stream; if consumers can trade such claims freely, and also on the same terms
as the firm itself, there can be no effect on the real transactions of the firm or
consumers. If a firm increases its debt by a certain amount, shareholders lose
claims to the future profit stream equal to precisely this value. They can com-
pletely offset this loss by buying exactly as many bonds as the fall in the value
of their equity.

The full significance of this result and its generality remained unclear for a
time since Modigliani and Miller made a number of unnecessary assumptions

7 See, e.g., Hart (1995) for a new approach to corporate governance and the role of financial
markets.
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in their exposition. Stiglitz (1969, 1972b) clarified many of these issues and
has become the main reference for the result. The model introduced in the
previous section enables us to state the result clearly and to see exactly which
assumptions are essential.

Denote by «i the value of future profits of a typical firm j € J. This value ac-
crues to the shareholders as equity value ¢/ or to the debt-holders, - 8,

wi=é+q-p.

As before, the share of firm jthat is held by consumer i is denoted by . Recall
that o indicates a percentage share in the firm’s equity value ‘and not anum-
ber of nominal titles. Furthermore, notice that the firm can raise the desired
amount of debt by using any of the assets available in the economy. Thus,
P’ e RKis the portfolio of asset holdings of firm j. If B} is positive for some asset
k, this indicates that firm jhas sold this asset to finance input purchases; other-
wise, for B} negative, the firm purchases the asset. With a given production
plan y/ and a given portfolio choice B/ to finance it, the firm generates the
following cash flows for its equity holders:

e in period 0, equity holders have to pay for the expenditures on inputs not
covered by the firm’s debt: & := p - ¥ + q- B, and
o ineach state s, equity holders receive dividends: &/ yi-r, Bl
Recall that q- B/= %, q; - B and r,- /= T 1 - B} denote the value and
the return in state sof a portfolio /= (B, .. . B), respectively.
The Modigliani-Miller argument runs as follows:

Suppose some firm with a given production plan y/ decides to raise more
funds issuing debt by choosing a portfolio / + AB/ with q - AB/ > 0. This
reduces the amount an equity holder i has to contribute to the input pur-
chase

Si=po-yi+a-B+AB)>py-yi+q-P=§.

On the other hand, the profit that the equity holder receives in any state s
decreases:

8i=pyi-r, (B +8B) <py-yi-r,- P= 8L
Suppose a shareholder owns o} of the claims to this firm and uses the re-
duced contribution to input purchases in period 0,0} - q- Ap’,to buy the

portfolio of assets Aai = o7 - AP/ This consumer then receives in each
state s

(0] - i+ 1, Aal = 0] - [p,- yi=r,+ (B +APN] +1,- 0] - AP = o - L.
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Thus, the consumer achieves the same cash flow in each state that she
could obtain before the firm changed its financial structure. Notice, how-
ever, that in the model of this chapter the contribution of the old share-
holder has decreased, since her cash flow in period 0 has risen, 56 > &)
The equity value ¢/ must therefore be adjusted appropriately or old share-
holders would not be indifferent to such a change in the firm’s financial
policy.

To make this argument precise and to understand its generality and its
limitations, one needs to consider carefully the extent to which a firm’s share-
holders are capable of maintaining their wealth in every state and date by mak-
ing comp y rearrang in their portfolios. In this context, it is
important to note that most of the literature assumes all of a firm’s cash flows,
including those in period 0, accrue to the new shareholders.® Here, however,
we retain the model as presented in the previous section where the initial
shareholders receive the cash flow in period 0. The following theorem puts the
argument into the context of a general stock-market equilibrium.

THEOREM 5.1 (Modigliani-Miller theorem). Let ( (p:.6), (xa,07)c ), be a
stock-market equilibrium for production-finance plans (y/,);;. Then, for
any production-finance plans (¥,') e, ( (p.4,6), (xd%,07) ),
with

d=e+q-(F-P) forallfirmsje]

di=ai+ Zlo'} -(B/-p)) forall consumersiel
3

is a stock-market equilibrium as well.

PROOF. It will be shown that, for any consumer i € I, the budget set in
period 0 and in any state s € S remains unchanged with respect to the real vari-
ables (x,0) if the firm’s financial policy is changed to B’and if (i) consumers
change their asset holdings to @, and (ii) the equity value changes to é/ for all

firms.
Consider a consumer’s budget constraint in period 0 for a portfolio of

financial assets 4 if she faces an equity price é:
Po- X+ q-ai+3oi - 6 < py- 0+ 36} - (64 &),
©l -l
where 8} =po- yj+q- B denotes the cash flow for the initial shareholders

after the financial plan of the firm has been changed to P Substituting for di,
&/,and 8, one obtains

8 See e.g. Duffie’s (1991) exposition of the Modigliani-Miller theorem (pp. 1620, 1621).
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po %+ q-la+30] - (F= ) + Toj - (+q- (B/=P)
S por0f+ 3] (& +q- (B~ B+ (o s+ a- B,
which can be simplified to
Po- X+ q-ai+ 3ol < pyr 0+ 3G (6 + &)
2 el
Similarly, for an arbitrary state s € S, the budget constraint
P % < po 0+ Zof 84 r, di
13

with the adjusted dividend payment Si=p,-yi-r1,- B, can be transformed by
substitution for di to yield

Pt S e @+ 30] - (b= re Bl r,- (a4 Zoj - (B P,
This is of course equivalent to
po- Xi S py- @i+ Xoj - 8j+r,- dl.
=l

Thus a consumer can make a portfolio transaction 4/ which offsets any change
firm jmakes to its financial structure /3, provided the equity value of each firm
jchanges to . Such a portfolio transaction leaves the budget set for the other
choice variables (xi,0") unchanged. Hence, consumer i must find the same
choices of (xi,0") optimal both before and after the portfolio and stock price
change. This shows that the choice (x},4,0%) is optimal for consumers (part (1)
of the equilibrium definition).

The second equilibrium condition (market clearing) needs to be checked
for financial asset markets only. Since the original situation was an equilib-
rium, one knows X ,o‘} = 1 for all stock markets j € Jand X, ,ﬁ{ =X aifor
all financial asset markets, k € K. Thus, considering an arbitrary market for a
financial asset k € K, one obtains :

BB = 3ok 3ol G- pb1 -3 l= Zal-plo.

where the last equation equals zero because the financial asset markets were in
equilibrium before. This establishes our theorem. [ ]

The intuition behind the Modigliani-Miller result is simple. If a firm
changes its debt level, the new equity owners in period 1 will experience a
change in their dividend stream because of the change in debt. If consumers
can borrow and lend on the same terms as firms, they can simply buy or sell
financial assets to offset such a change. If the new shareholders receive the
period 0 cash flow, as most derivations of the Modigliani-Miller theorem
assume, no other changes are necessary.
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This is easily seen by considering the budget constraint of a consumer in
period 0 ing that new shareholders do get the period 0 cash flow &:

Po-Xo+q-ai+3ol ¢ < py-wi+36i e+ Yol - &,
=l 3 =l

Any change in firm js portfolio B will change its cash flow in period 0 to
&= Po- Vot q- ,B’ Suppose that consumer i chooses a new portfolio
di=a+ ¥ 00 (B - P) to offset the firm’s portfolio changes. Notice that a
shareholder adjusts her asset trade exactly by its share in the firm’s portfolio
change o} - (B’ - B/). Substituting for diand 8, one obtains:

po- x5+ q-di+ Yo el Zcr;~65
=Pa'x<'i+‘1'[ﬂ’+)§,0}'(ﬁ’—ﬁ')]’f%l’;'[2’-(Pu'}’é+q'ﬂ’)l
=po-)ﬁ§+q-a"+.EL#-IE’-(Po-yé'Jrq-ﬁ’)]
=Py X +q-a+ ):o' [e/- &) Spo‘w5'+£ld'j~ei4
I3

In this case, the initial shareholders are not affected at all by the change in the
firm’s cash flow. Therefore, no adjustment of the equity price is necessary. This
is the scenario in which the Modigliani-Miller theorem is usually cast.
Theorem 5.1 shows, however, that the result does not require all cash flows to
g0 to the new shareowners provided that the equity price is adjusted accord-
ingly.
Note carefully the exact claims of Theorem 5.1:

Stock-market equilibria exist for any financial structure that firms may

choose, but equilibria are differentiated only by the asset holdings of con-

sumers and the equity value (if old shareholders obtain the cash flow of

period 0).

Thus, as long as there is no change in firms’ production plans, there need not
be any change in consumption or firm ownership as a consequence of an al-
tered financial structure.

The financial structure of firms is irrelevant, however, only if all consumers
adjust their portfolios appropriately. Notice that it is important for all con-
sumers to do so. Should some consumers fail to make the necessary portfolio
adjustment, the bond market no longer clears and prices must change.
Simultaneous actions by all shareholders are required to obtain the result that
the financial structure of the firm is irrelevant.

On the other hand, the theorem is much more general than Modigliani and
Miller originally thought. In particular, there is no requirement that firms use
only riskless debt, nor does one need a complete set of financial markets. The
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essential assumption is that consumers and firms are able to buy and sell assets
on the same terms. If one looks for reasons why the Modigliani-Miller theorem
may fail to hold, one has to consider instances where borrowing and lending
facilities are no longer equal for firms and consumers. The last part of this sec-
tion indicates two possible situations.

One of the reasons why the Modigliani-Miller theorem may fail to hold is
that firms may go bankrupt. A bankruptcy occurs when a firm cannot meet its
debt obligations without further contributions by shareholders. Suppose that
a firm is bankrupt in state sbecause it cannot repay its debt out of its own cash
flows from production and sales, i.e. if 8] < 0. This raises the question of how
the resulting deficit will be covered.

The original of the Modigliani-Miller th requires share-
holders to provide the necessary additional funds in such a case. Bankruptcy
laws, however, usually imply that, after all assets of the firm have been liqui-
dated and debt has been red d as far as possible, the remaining debt is for-
given. Hence, if there is a limited liability law for firms, cash flows cannot
become negative,

8= max{p,-yi—r,- p/0}, forseS.
Notice that, with just two periods of activity, firms can be viewed as liquidat-
ing all assets in every state of period 1. Hence, cash flows coincide with liqui-
dation surpluses or deficits.

Consider a stock-market equilibrium for production-finance plans such
that no firm is bankrupt in any state s. Suppose that one firm, say firm j,
changes its finance policy to ﬁ"' such that bankruptcy now occurs in some state
s. There is now no longer another stock-market equilibrium with only an ad-
justment of shareholders’ financial assets:

Py xi < p,- m;’+§a;’ 84 r,- i
)3
If a bankruptcy of firm j' occurs in state s,
poyi-n-B <,
then 5{ = 0 and, by substitution for 4/, one obtains:

Pir X
Sp @+ 2.0] - [pe-yi=r P) + 004 1, [ai+ of - (B~ )
=p 0+ 3.0] - 8+ raitofr (BB

'

The right-hand side of this inequality is larger than before the change in this
firm’s financing plan. Firms’ returns from financial assets differ from the
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returns that consumers receive because the bankruptcy law allows firms to de-
fault on their debt. Shareholders would like to increase financial asset holdings
and, in exchange with firms, to increase their debts. When firms have limited
liability, shareholders prefer the firm to be more highly geared since they do
not have to bear the negative cash flows in those states where the firm goes
bankrupt. Consequently, the Modigliani-Miller argument breaks down.

A second reason why shareholders might not be indifferent to a firm’s finan-
cial policy occurs when debt and equity claims are taxed differently. Suppose,
for example, that interest on debt is not deductible before taxes for consumers.
Clearly, shareholders would not want to take a compensatory portfolio posi-
tion if a firm were to decrease its debt, since shareholders would have to pay
higher taxes on income from these additional asset holdings.®

Notes on the Literature

Radner (1972) was among the first to note the problem of unanimity concern-
inga firm’s objective function in an economy with incomplete markets. A sym-
posium on ‘The Optimality of Competitive Capital Markets, published in the
Bell Journal of Economics and Management Sciences in 1974, contains articles
by Leland (1974), Ekem and Wilson (1974), and Radner (1974) focusing on
the question of ous ag| of shareholders on a firm’s objective
function if markets are incomplete. Grossman and Hart (1979) and Grossman
and Stiglitz (1980) provide comprehensive reviews of the problem.

The literature dealing with the Modigliani-Miller theorem begins with the
seminal article by these two authors (Modigliani and Miller (1958) ). The vast
ensuing literature covers management and economic aspects of the irrelevance
theorem. Stiglitz (1969) formalizes the theorem and this is the most commonly
used argument in p ions of the th It is c in this literature
to consider models where the financing decision of the firm affects new share-
holders only, and where no adjustment of the stock price is necessary.

Most of the management literature, arguing that a firm’s finance policy does
matter for its value, appeals to taxation or bankruptcy laws as causes of the un-
equal terms for borrowing and lending by firms and shareholders. There is also
a substantial literature on the importance of taxes in determining the optimal
financial structure of the firms (e.g., Copeland and Weston 1988). Hart (1995)
investigates the implications of the financial structure of a firm for the control
of management.

9 Exercise 7 provides an example of how taes affect the Modigliani-Miller theorem.
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Exercises

1. Consider a farmer who plants wheat at the beginning of a year. The amount
harvested at the end of the year will depend on the average rainfall during the
growing seasons according to the following table:

Average rainfall
Acres of wheat planted: x < 10mm 10-30mm  230mm
0-10 2-x 5-x 4-x
10-20 15-x 4-x 35-x
20-40 L'=3¢ 2-x 15-x

(a) Determine the state-contingent production function of this farmer. How
many states are there?
(b) Are there constant returns to scale?

2. Consider a firm with a technology described by the production function f(¢) :=
e where ¢ denotes labour input of the firm. Suppose that this firm faces a fixed
wage rate w but an uncertain price for its output. Assume that the output price can
be either high, p;, or low, p,, with p, > p,.

(a) Draw a diagram showing the state-contingent profit of this firm for al-
ternative levels of labour input ¢.

(b) Show in another diagram input—profit combinations for the two states.

(c) Explain whether asset markets can be complete if there are two firms of
this type whose stocks are traded as the only assets in the economy.

3. Consider an economy without financial assets. There is just one state, and a
single commodity is available in period 0 and state 1. Each of 100 consumers is en-
dowed with 5 units of the commodity in period 0 and 2 units in state 1. Preferences
of a consumer are given by the following utility function:

u(xpx)) = X3 - X

(a) Suppose there is a firm in this economy, owned by all consumers in equal
shares, which can use quantities of the commodity in period 0 to produce out-
put in state 1. Determine the stock-market equilibrium for a production plan
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(~400,300). What is the cash flow of this firm and what is the equity value of
the firm in equilibrium? Would all consumers want the firm to maximize
profit?

(b) For the case of one consumer, draw a diagram of this stock-market equi-
librium.

(c) Assume that the firm has a technology determined by a concave pro-
duction function y, = f{y,). Draw a diagram showing the equilibrium for this
case.

4. Reconsider the model of Question 3. Assume however that consumers’ prefer-
ences are given by the function

u(xp,x;) = min{xg,x,}.

5. Consider an economy with consumers who receive endowments that differ
across two states in period 1. There are two financial assets with linearly inde-
pendent return vectors that pay off in these two states. In this economy, the shares
of a single firm are traded which produces cash flows in period 1.

(a) Suppose that the firm’s cash flows depend on the same uncertainties as
the consumers’ endowments. Show that markets are complete and that the
firm’s equity can be priced by arbitrage.

(b) If there were just one financial asset, would markets still be complete and
could the firm’s equity still be priced by arbitrage?

(c) Show that the Modigliani-Miller theorem holds whether there are one
or two assets in the economy.

6. Consider an economy with a single firm and several consumers. The firm is a
mining company that owns a goldmine with unknown gold deposits. In a stock-
market equilibrium, equity of this firm is traded in period 0, though extraction of
the mine takes place in period 1. The original owners of the firm instruct the man-
ager of the firm to sell a bond promising a fixed return in each state of period 1.

(a) Write down the cash flows of the firm in period 0 and for an arbitrary
state in period 1 before and after the bond issue.

(b) Can stockowners make a transaction in the financial asset, i.e. buy or sell
the same bond, such that their state- and date-contingent income remains un-
changed?

(c) Will your answer in (a) and (b) change if bonds are issued after equity
has been traded?

7. Consider a stock-market economy with one firm and suppose that consumers
have to pay income tax in each state. The firm pays no taxes.
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(a) Assume that a tax is levied on net income after deduction of interest pay-
ments on debt. Show whether the Modigliani-Miller theorem holds in this
case.

(b) How does your result under (a) change if tax is levied on income with-
out an allowance for interest payments on debt?
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DEBT CONTRACTS AND
CREDIT RATIONING

In previous chapters, we maintained the ptions that all decisi kers in an
economy can specify, agree on, and eventually verify states of the world, and that
decision-makers know each other’s preferences and beliefs. Given these assumptions,
anonymous trade of state-contingent contracts in competitive markets is conceptu-
ally feasible, as we have seen in Chapters 2 to 5. In this chapter, we abandon these sim-
plifying assumptions.

First, we will drop the ption that all decisi, kers have lete and iden-
tical information about each other’s characteristics. In the context of an insurance
market, asymmetric information about some players’ risk characteristics may lead to
a breakdown of the market on account of adverse selection. We show how other in-
stitutional arrangements, e.g. specific forms of financial contracts, may help to over-
come this problem.

Next, we investigate the implications of dropping the ption that states can be
verified without costs. In this case, a standard debt contract turns out to be an opti-
mal arrangement between borrowers and lenders. In particular, because of costly
state verification, lenders charge a fixed interest rate as long as the borrowers stay sol-
vent and assume control of the business if they default.

Finally, we analyse the of using standard debt inan economy
where the characteristics of loan applicants are unobservable. The default possibility
inherent in a standard debt contract together with the adverse selection problem for
loan applicants with differing riskiness may well make a lender ration credit for
seemingly identical loan applicants.

m



Asymmetric Information: Contracts

6.1 Adverse Selection in Insurance Markets

Asdiscussed in Chapter 3, trade in assets opens insurance possibilities for indi-
viduals. With asset markets, differences in state-contingent endowments, in
attitudes towards risk and in beliefs, represented by subjective probability dis-
tributions over states, can be traded off to find a Pareto-optimal allocation. In
particular, we found that, if there is no aggregate uncertainty and if traders
have identical von Neumann-Morgenstern utility functions and identical
beliefs, agents will completely insure each other and bear no risk at all.
Similarly, with identical beliefs, a risk-neutral player will always insure a risk-
averse individual completely.

Reconsider this latter case with the following modifications. A risk-neutral
insurer faces applicants demanding insurance against a particular loss, say fire
insurance for their homes. Assume that, after consideration of relevant
observable characteristics, e.g. size and construction of the insured object, the
insurer faces a class of applicants who are indistinguishable from one another.
All potential customers face the same loss of wealth L if their homes burn
down, but a group of them has a higher probability 7, of suffering a loss than
the other, ;. The loss probability of a customer represents private knowledge
held by this agent and cannot be used to condition the insurance premium.
The insurer’s prior assessment of the likelihood of facing an applicant with
high loss probability 7, is 6. For simplicity, assume that the proportion of cus-
tomers with a high loss probability in this economy is also equal to 6.

Denote the situation where a customer suffers a loss as state 1 and assume
that insurance can be bought at a price p. Notice that this is equivalent to
trading state-contingent consumption contracts at the relative price p/(1 — p).
To see this, note that by buying insurance coverage dat a premium rate p,a cus-
tomer secures the state-contingent consumption vector

x=W-L+d-p-d, x,=W-p-d
Similarly, the insurer obtains a state-contingent profit from an insurance
policy (d,p) equal to
n=-d+p-d=W-L-x, yp=p-d=W-x,.

An insurance policy (d,p) corresponds therefore to state-contingent con-
sumption vectors (x;,x,) for the customer and (y,,y,) for the insurance firm.
When there is no insurance d = 0, (x,x;) = (W~ L,W) and (y,,y,) = 0 follow.
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Our diagrammatic exposition of the insurance problem employs a represent-
ation in terms of state-contingent consumption.

6.1.1 Competitive market failure

‘We show now that, due to asymmetric information, either no market equilib-
rium exists at all, or an equilibrium will have all high-risk customers insuring
completely! and the low-risk customers buying insufficient insurance or no
insurance at all.

Since the insurer cannot distinguish between the two types of customers,
she must supply the same amount of insurance to each customer asking for
insurance at the market premium p. Let 7be the loss probability on which the
insurer’s supply decision is based. The quantity offered D can be derived from
the insurer’s optimization problem:

Choose D to maximize n-(p-1)-D+(1-n)-p-D=(p-n)-D.

A risk-neutral insurer will supply any amount of coverage Dif p = wholdsand
D=0 for p < 7. For p > m, the problem has no solution. It follows that in any
equilibrium where trade takes place, the price of insurance must equal the
probability of a loss as assessed by the insurer, p = 7. This decision problem
can be represented in a simple diagram of state-contingent consumption.

Since y, = (p—1) - Dand y, = p - D, it is clear that a free choice of insur-
ance coverage D for given premium p corresponds to a restriction of contracts
to those that satisfy

-1
n= (P_p) 40

or equivalently, after substitution of y; = W— L—x,and y, = W—-x,,

W-p-L P
—— .
a-p (-p
Note that this represents a downward-sloping line with slope —p /(1-p) pass-
ing through the endowment point (W — L,W). Points on this line represent the
different bundles of state-contingent ption that the i com-

pany is willing to offer at the given premium rate p. This line is represented in
Figure 6.1 below.

The expected profit of the insurer, G, can also be expressed in terms of x; and
x,as

%

G=rm-p+(l-m-yp=n-(W-L-x)+ (-1 (W=-xp).

1 Thisis of course a particular instance of Akerloff’s lemon market (Akerloff 1970).
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x

Fig. 6.1

For any given level of profit G, the iso-expected-profit lines of the insurance
company are then easily computed as
_W-m-L-G =&

2Tt a-m

X

Note that all iso-expected-profit lines have the same slope —7 /(1-7) and that
the zero-profit line passes through the endowment point (W — L, W). Figure
6.1 contains a number of iso-expected-profit lines with a slope 7> p. Higher-
profit levels lie closer to the origin of the diagram, so obviously the firm would
not want to provide insurance in this case.

This confirms our previous algebraic analysis of the profit-maximization
problem for the insurer. It is left to the reader as an easy exercise to illustrate the
firm’s decision problem in the case where p > 7.

Consider now the demand for insurance by a customer whose loss proba-
bility is 7, where tis either H or L. This customer will

choose d, to maximize 7+ uW—-L+(1-p)-d)+(1-m) - u(W—-p-d,).
Equivalently, using x, = W— L+ d,— p - d,and x, = W— p - d, and, substitut-
ing for d, one can analyse this problem as follows:
Choose (x;,x,) to maximize 7, - u(x;) + (1 = 1) - u(x,)
subjectto p-x+(1-p)-x=W-p-L

At full insurance, d, = L, (x, = x,) the marginal rate of substitution equals
/(1 - m,). If customers are risk-averse, and u(-) is therefore concave, the
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marginal rate of substitution is falling along any indifference curve. Customers
therefore want to insure completely, d, = L, for any premium not exceeding
their loss likelihood, p < 7,.

Figure 6.2 illustrates the optimal insurance decisions of the two types of
customers for different insurance premiums. Indifference curves of customers
with high loss probability 7, are indicated by broken lines, while those of low-
risk customers are drawn as solid lines. As the figure illustrates, indifference
curves of high-risk consumers will always be steeper than those of low-risk
consumers.

In equilibrium, the beliefs of all market participants must be consistent. If
both groups of customers demand the same amount of insurance, the insurer
will face an average loss probability of 7= 8- 7w, + (1 - 6) - 7, per unit of in-
surance sold. In this case, the equilibrium premium p* for a unit of insurance
must equal the probability of a loss as expected by the insurer, p* = . Hence,

Ay>pt=0-1y+(1-6)-m>m.
At such a premium, however, all consumers with a loss probability 7 will
completely insure while consumers with 7, will want to insure only partially or
not at all (see Figure 6.2). The insurer would suffer a loss from the high-risk
consumers that may or may not be compensated by the expected gain from the
low-risk consumers.

The only equilibrium that is possible in this economy with asymmetric in-
formation has customers with alow loss probability 7; demanding incomplete

X,

w

Fig. 6.2
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or no insurance at an equilibrium price p* between and 7. In contrast, cus-
tomers with a high loss probability will insure completely. Hence, due to ad-
verse selection, there are too few good risks in the insurance market. In
particular, there is no equilibrium where both types of consumer demand the
same amount of insurance. Anonymity breaks down and consumers reveal
their types by demanding differing levels of insurance.

With asymmetric information about agents’ characteristics, market equilib-
ria exhibit the undesirable property that too many assets of the lowest quality
will be traded. To overcome this problem, financial contracts can no longer
offer free choice of quantity at a given price. To induce self-selection of cus-
tomers with different characteristics, an insurer can offer price-quantity pairs
that induce customers to reveal their true characteristics. With contracts that
induce customers to reveal their true risk, however, it will no longer be possible
to achieve a Pareto optimum, and to co-ordinate decisions of traders by simply
adjusting the market price.

6.1.2 An optimal insurance contract

In order to derive an optimal contract under asymmetric information, the
following approach is adopted:

(i) the insurer maximizes her objective function subject to the following
constraints:
(ii) allocations must be feasible,
(iii) allocations must be individually rational, and
(iv) allocations must satisfy a set of incentive-compatibility conditions.

An optimal contract is a contract that gives all the gains from trade to one
trading partner, here the insurer. Without asymmetric information, as
reflected in the constraints (iv), the allocation would be Pareto optimal.
Individual rationality, constraint (iii), rules out contracts that would make a
customer worse off than if she had simply refused to participate. The following
example illustrates the optimal insurance contract for the case where there is
no asymmetry of information. In this case, the insurance firm can design indi-
vidual contracts for all types of customers.

Example 6.1 (optimal contract without asymmetric information). Consider
this economy under the assumption that the insurer can distinguish amongst
customers with differing degrees of riskiness 7,. The optimal contract would
then maximize the expected profit of the insurer from each group of cus-
tomers separately. Since there is no asymmetry of information, only feasibility
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and individual rationality constraints need be observed (i.e. constraints (ii)
and (iii) ). Figure 6.3 shows such an optimal contract. Recall that iso-expected
profit lines correspond to increasingly higher levels of profit as they lie closer
to the origin. Furthermore, expected profits are positive for iso-expected-
profit lines to the left of the one passing through the endowment point
(W-L,w).

Individual rationality (constraint (iii) ) rules out allocations below the in-
difference curve passing through the endowment point. Feasibility (constraint
(ii) ) cannot be seen directly in the figure. It is satisfied if either (i) the propor-
tion of customers in this risk class who suffer a loss is sufficiently small com-
pared to the lucky ones or (ii) if the insurer can provide sufficient funds to
support this insurance contract. It is, however, optimal for the insurer to pro-
vide full insurance at a premium that extracts all consumers’ surplus from the
customers (at A in Figure 6.3). n

To take into account restrictions deriving from asymmetries of informa-
tion, one has to impose further constraints. To be incentive-compatible the
allocations under an optimal contract must not provide incentives for any agent
to misrepresent her private information. These incentive, or truth-telling, con-
straints exclude contracts that would allow individuals to secure a better
allocation by falsely claiming to have the unobservable characteristics of other
individuals. Contracts have to be such that individuals self-select, preferring
the contract that was designed for them.

One may wonder whether the incentive constraints (iv) impose unreason-
ably strong restrictions on the form of the optimal contract. A famous result,

)

Fig. 6.3
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the revelation principle, ensures that any incentive-compatible allocation
which can be achieved under any type of contract, no matter how complicated,
can also be obtained through a truth-telling contract.2 Thus restricting choice
to truth-telling contracts does not restrict the set of incentive-compatible
allocations.

Returning to our insurance example, suppose that the insurer offers two
contracts consisting of a premium p and an insurance level d. As argued above,
this is equivalent to proposing a particular allocation (x,,x,) of state-contin-
gent consumption. The idea is to choose these contracts (p,d) such that only
the group of customers for whom the contract is written have an incentive to
ask for it. Denote by (py,dy) and (py,d,), or alternatively (x},x¥) and (x},x}),
the contracts designed for the customers with high- and low-loss probabilities,
respectively.

We assume that the insurer maximizes expected profit by offering such con-
tract pairs subject to the constraint that no customer has an incentive to claim
any other contract apart from the one designed for her. Furthermore, the con-
tracts must be individually rational. The optimal contract pair must therefore
solve the following optimization problem:

Choose (x},x¥) and (x} ,x§) to maximize
0- (1 (W=L—xt) + (1= 1) - (W—xE)] + (1 - 0) - [, - (W—L—xk)
+(1-m) - (W=x§)]

subject to
- u(x) + (1= 7g) - u(x¥) 2wy w(W= L) + (1= 7my) - (W), (IRy)
m - u(xD) + (1-m) - uGd) 2 m - u(W-L) + (1 -m) - (W),  (IR)
Ty - u(xH) + (1= 1) - u(xy) 2 7y u(xh) + (1 - ) - u(xh), (ICy)

- u(xh) + (1 mp) - ulxh) 2 - () + (1 ) - u(xy). ucy

Though it is not possible to determine the optimal contract completely with-
out specifying explicit von Neumann-Morgenstern utility functions, several
properties of an optimal contract pair can be derived without such detailed
knowledge about risk-preferences. The following observations allow us to
draw these general conclusions.

<

K

1. Notice that each contract must be expected-profit-maximizing given
the other contract. Considering a contract (x4,x4) in Figure 6.4, contracts
along the indifference curve through (x4,x4) towards the 45°-line increase

2 Forabrief exposition of the revelation principleand for further references see e.g. Laffont (1987).
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the expected profit of the insurer, because the consumer’s marginal rate of
substitution is higher than that of the insurer, reaching equality on the 45°-
line.? Furthermore, full-insurance contracts are more profitable the closer they
lie to the origin. This is illustrated in Figure 6.4.

2. For a given insurance contract (x/,x¥), incentive compatibility IC; re-
quires the contract for the low-risk customers, (x},x%), to lie on or above the
indifference curve of the low-risk customer through (x},x¥). This s illustrated
in Figure 6.5. Analogously, for a given insurance contract (x4,x}), the incentive
constraint ICy, requires contracts for the high-risk customers to lie on or above
the indifference curve of high-risk customer through (x4,x%). The insurance
contract pair in Figure 6.5 satisfies both incentive constraints.

3. Suppose that neither of the incentive constraints, ICy and IC,, is binding
for an incentive-compatible insurance contract pair as in Figure 6.5. Keeping
the insurance contract (x},x}) of the low-risk customer fixed, the insurer can
raise expected profit from the high-risk contract by choosing a contract where
the 45°-line intersects the indifference curve of the high-risk consumer
through (x,x}). Figure 6.6 shows the range of contracts for the high-risk cus-
tomer that are incentive-compatible given (x4,x}) and that improve the
expected profit from the high-risk customer contract as compared with
(xflyxt).

X

Fig. 6.4

3 This argument also shows that overinsurance (x, < x;) cannot be in the interests of the insurer.
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Fig. 6.5

t £ %

Fig. 6.6

This argument shows that, for an optimal contract pair the incentive con-
straint of the high-risk customer, ICy, must be binding, and the high-risk cus-
tomer will be completely insured, x}/ = x.

4. Suppose now that the incentive constraint of the high-risk customer is
binding and that this customer is fully insured. The shaded area in Figure 6.7
indicates all contracts for the low-risk consumer that yield a higher expected
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x

Fig. 6.7

profit for the insurer and that are individually rational for the low-risk cus-
tomer.

By choosing a contract on the individual rationality constraint IRy, the in-
surer can increase expected profit from the low-risk customer. Though this
may violate the incentive-compatibility constraint of the high-risk customer
for the given contract (x¥,x4), lowering this contract while maintaining full
insurance to maintain incentive-compatibility will increase the expected
profit from this contract as well. One can therefore conclude that, for an op-
timal contract pair, the individual rationality constraint of the low-risk cus-
tomer, IR}, must be binding.

As indicated before, without explicit specification of the von Neumann—
Morgenstern utility functions it is impossible to characterize the optimal con-
tract pair completely. However, knowing that both customers are risk-averse
and that their preferences satisfy the expected utility hypothesis is sufficient to
deduce that an expected-profit-maximizing insurer will offer a contract pair
such that

o the low-risk consumer obtains no surplus out of this contract and is in-
completely insured, while

o the high-risk consumer will be fully insured and, in general, extract some
surplus from the insurer.

At this stage, it is worth recalling that without asymmetry of information each
customer would be fully insured and no surplus would go to any customer.
Apart from preventing the insurer from offering full-insurance contracts to all
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customers, because incentive compatibility would be violated, the asymmetry
in information allows the high-risk customers to secure some of the surplus.

The analysis of the insurance contract under asymmetric information illus-
trates the different approach needed to analyse economic behaviour under
asymmetric information. Competitive price-taking assumptions are no longer
appropriate, since economic agents may differ in characteristics which are im-
portant for trade among them but about which information is not available to
all market participants. Depending on the precise description of the informa-
tion flows, different contractual relationships may be necessary to guarantee
institutions that are optimal given the informational constraints.

6.2 A Standard Debt Contract

The previous section illustrates how asymmetric information may lead to a
breakdown of competitive markets on account of adverse selection. The im-
possibility of knowing ex ante the riskiness of customers forced the insurer to
offer only contracts which forced customers to reveal their private informa-
tion. These incentive constraints proved to be costly for the insurer. One may
be tempted to presume that this problem arises because of the impossibility of
knowing the personal characteristics of trading partners. This section shows
that asymmetries of information determine contractual arrangements even if
the required information can be gathered. In addition, as we shall see, this is
the case whether or not the decision-makers involved are risk-neutral or risk-
averse.

Consider the following environment for a credit relationship. There are
risk-neutral entrepreneurs who have investment projects with uncertain re-
turns but who need capital to finance the necessary input purchases. On the
other hand, there are risk-neutral potential lenders with funds available who
are willing to make loans to the entrepreneurs provided their opportunity
costs are met.

The asymmetry of information concerns the output that the investment
projects actually reap. Entrepreneurs and lenders share beliefs about the likeli-
hood of the possible outcomes from investment. However, because the entre-
preneurs run the business, they know the realized outcome while lenders do
not. They can of course gather the necessary information about the actual re-
sult, perhaps by ordering an audit of the entrepreneur’s business, but this is
costly. The question therefore arises as to how knowledge of the impending
asymmetry of information influences the contract at the time the loan is made.
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Suppose that entrepreneurs have investment projects which require one
unit of capital and produce a state-dependent return f{s), s € S. Without loss of
generality, assume that states are ordered such that higher states imply higher
output, i.e. f{s) is a monotonically increasing function.

Ex ante, all parties share the same information about the project, i.e. the
probability distribution of states is common knowledge. The set of states is
finite and p(s) denotes the probability of state s occurring. It will be useful to
denote the probability of an event Eas P(E) = X pp(s).

Lenders have funds which they can invest in entrepreneurs’ projects. They
face an opportunity cost of I= (1 + i) per unit of capital. Individual rational-
ity requires that the expected return from a loan contract be at least equal to L.
Lenders cannot monitor states (or equivalently output) without costs.
Monitoring costs are expenses, like legal fees, fees for auditing etc., which are
paid to third parties, i.e. which go neither to the borrower nor to the lender. For
simplicity, assume that monitoring a state requires a fixed cost of .

A contract (,p) is a pair of functions such that

© p(s) determines the state-dependent pay-off which the lender receives,
and

o f(s) € {0,1} specifies the states where monitoring takes place, with B(s) = 1
indicating states that are monitored according to the contractand (s) = 0
indicating those not monitored.

It will be useful to denote the set of states where no monitoring takes place by
S(B {se S| B(s) = 0}. Similarly, the set of states which are monitored will
be written as $,(f) := {s€ S| B(s) = 1}.Clearly, S = S,(B) + So() for any func-
tion fB.

‘We assume that entrepreneurs have no capital of their own, so that their en-
tire capital requirement must be raised from lenders and that, besides what
they earn from the project, they have no funds available to repay loans; hence

0= p(s) < fs) = v+ Bls).

Since lenders cannot observe the state of the entrepreneur’s affairs directly,
they have either to rely on the entrepreneur’s report or they have to incur the
costs necessary for auditing the entrepreneur. Hence, once the state is revealed
to the entrepreneur but not to the lender, the entrepreneur has to declare that
state $ has occurred. Whether the entrepreneur’s declaration is credible or not
depends on the specified repayment p(s), and can be determined at the time
the contract is written. Hence, the contract requires monitoring in those states
where an incentive exists to misrepresent the true state.

If a declared state § is desi d to be itored, then ing takes
place and any false declaration will be detected. One can assume, therefore,
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that reports of states that are monitored will be correct. If the announced state
is not designated as observed, no monitoring occurs and misrepresentation of
the true state may be in the interests of the debtor. Incentive-compatibility
obtains if repay p(s)in itored states, i.e. s € Sy(/3), do not provide
incentives for the entrepreneur to make false reports. Hence, we require the
contract (,p) to be such that, in each state s € S, the net profit of the entre-
preneur from a correct report is at least as good as that from a false report:

fis)=p(s) 2 fis) —p($) forallseSy(B) andallseS (IC).

The following lemma is an immediate consequence of the requirement that
contracts be incentive compatible.

LEMMA 6.1. A contract (B,p) is incentive-compatible if and only if the re-
payment schedule p(-) is constant on Sy(f8):

p(s) =R for all s € So(B),
R2p(s) forall s e S,(f).

PROOF. Suppose there are s, s" € Sy(B) such that p(s) > p(s') and suppose
that the entrepreneur observes state s. Then the entrepreneur will have an in-
centive to announce the state s, since f{s) — p(s') > f{s) — p(s). If thereis s€ §
such that p(s) > R, then the entrepreneur will have an incentive to announce
an unobserved state in Sy(8). n

Lemma 6.1 demonstrates an important feature of an incentive-compatible
contract: repayments of a loan have to be state-independent, i.e. constant
across states, or monitoring costs must be borne. Because auditing is costly,
loan contracts do not usually specify state-contingent payments. So why then
does monitoring occur at all?

If the opportunity cost of funds I were smaller than the worst outcome of
the investment project, I < min{f(s) | s € S}, then no auditing would occur in
an optimal contract, *(s) = 0 for all s€ S. The repayment would be equal to
the opportunity cost in any state, p*(s) = I,and a first-best allocation between
entrepreneurs and lenders could be obtained. No monitoring is necessary and
no surplus is left to an outside party. On the other hand, if there are states
where the return on the investment project falls short of the opportunity costs
of funds, I > min{f(s) | s € S}, a first-best contract is no longer feasible. To
achieve an expected return from a loan contract that would cover the oppor-
tunity cost of funds, repayment in at least some states has to be higher than I.
Hence, a constant repayment, which is a necessary condition for no monitor-
ing in an incentive-compatible loan contract, is not feasible in every state and
monitoring has to take place in some states.
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To further characterize the optimal loan contract in this environment, we
need to consider the expected returns of entrep and lenders from an
incentive-compatible contract. Recalling the notation P(E) = X gp(s),an en-
trepreneur’s return from a contract (,p) can be written as

(B.p) '=E.sp(5) - [fs) = p(s)]
=Ef- 3 - p(s) - p(s) =R~ P(S,(B)),

where E,fdenotes the expected value of the return f. Similarly, a lender’s return
can be computed as

o(B,p) = p(9) - [B(9) - (pls) =7 + (1= () ) - p(s)]
=X p(s)-p(s) + R-P(S(B) ) -7 P(S(PB))-

€ So(B)
Notice that every contract (f,p) shares the expected value of the investment
project minus the payment for monitoring between the entrepreneur and the
lender:

7(B,p) + o(B,p) = Exf—7- P(S,(B) ).
Saving on monitoring costs is therefore in the best interests of both parties.

An optimal incentive-compatible loan contract (B,p) maximizes 7(,p)
subject to the following constraints:

a(Bp) 21, (IR)
fis)=y2p(s)20 forallseS,(B),
fis)2R20 forallseSy(f). (F)

Besides the individual rationality constraint (IR), feasibility constraints (F)
have to be observed. Notice that the incentive-compatibility constraint,

fis)=p(s) 2fis) - p(3) forall$ e Sy(B)andallsesS, (1C)
is already included through the characteristics of an incentive-compatible
contract derived in Lemma 6.1.

It is easy to see that the incentive-compatibility constraint (IR) must be
binding. Otherwise, one could lower R, the return on the loan in states that are
not monitored, without affecting the remainder of the contract. This would
increase the profit of the entrepreneur. Given of 8,p) = I, one easily obtains

wBp) = Ef-1-7- P(S,(B))

for the objective function of the entrepreneur. The optimization problem for
the optimal loan contract can now be rewritten as follows:
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Choose (B,p) to maximize Epf— I—y- P(5,(B) ) subject to
EZSI(DP(S) p(s) + R-P(Sy(B)) -y P(S\(B)) - I=0,
B(s) - [Rs) = 7-p()] + [1=B(s)] - [As) - R] =0 forallseS.

In this formulation, it is obvious that the optimal contract must minimize
monitoring costs. The fact that an optimal contract must minimize monitor-
ing costs and then distribute the remaining returns from the investment pro-
ject such that the individual rationality constraint of the lender is satisfied,
provides a further characterization of the optimal loan contract.

LEMMA 6.2. An optimal loan contract has the following form:

R for s € Sy(B) 0 forfls)2R.
pls) = ,B(s) =
fi)-y forseS(B) 1 forfls)<R
PROOF. The following two claims need to be checked in order to establish
the lemma: (i) monitoring where the non-monitored payment is still feasible,
B(s) = 1if f{s) 2 R, is not optimal, and (ii) to ask for less than the maximum
when monitoring occurs, p(s) < fs) — 7 for s € S, (), is not optimal.

Claim (i): Suppose (B,p) is an optimal contract and there is a state 5 € S,()
such that f{3) > R. Then it is feasible to give up monitoring state §and to ask for
a repayment of R in this state. The individual rationality constraint is now
satisfied with a strict inequality,

I =o(Bp) =’§sl(mP($) - p(s) + R P(Sy(B)) - v- P(Si(B))
<2S mp(s) -p(s) + R- P(Sy(B) ) =7+ P(Si(B) ) + [R=p(3) + 11 - p(3),
s€S5)

since R 2 p(3) from incentive-compatibility (Lemma 6.1). By not monitoring
state §, one can lower the cost of monitoring without violating any other con-
straint. It is now possible to reduce the repayment of the entrepreneur R until
the individual rationality constraint binds again. This increases the expected
profit of the entrepreneur, contradicting the assumed optimality of the con-
tract (,p). Hence, for an optimal contract, f{s) < Rfor all s € §,(B).

Claim (ii): Now suppose there is § € S,(B) such that p(3) < f{$) — yfor an op-
timal contract (B,p). Consider another repayment schedule 5(s) which is equal
to p(s) for all s # § and satisfies 5($) = f($) — 7. The contract (,p) satisfies the
individual rationality constraint with strict inequality:

I=olpp) <X o p(3)- p(s) + [A(5) = p($)] - p(5) + R- P(Sy(B)) - P(S\(B))-
5]
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Hence, one can lower R, the payment in the states that are not monitored, to
some R’ such that the individual rationality constraint binds again. If R < f{s)
for some s € S,(f3), then this state no longer needs to be monitored, saving ¥
and increasing the expected profit of the entrepreneur. Otherwise, the entre-
preneur and the lender will be indifferent to such a change. An optimal con-
tract therefore requires p(s) = f{s) — y for all s € 5,(B). [

Lemma 6.2 states two further properties of an optimal contract: it does not
pay an entrepreneur to specify monitoring in states where this is not necessary,
and to monitor more states than is necessary given the IR constraint. The fol-
lowing example illustrates the optimal contract structure.

Example 6.2. Figure 6.8 shows the typical structure of an optimal loan con-
tract. Notice that a continuous state space is used to provide a clear figure.

P

)y

As)

0 monitoring s,  no monitoring H

Fig. 6.8 u
The properties of incentive-compatible loan contracts which we derived in
Lemmas 6.1 and 6.2 typically apply to debt contracts in the real world. In spite
of the fact that both borrowers and lenders often know that a borrower’s
capacity to repay a loan depends on circumstances beyond the control of the
borrower, loan contracts are very rarely contingent on outcomes. Most con-
tracts feature a fixed repayment, even though both parties may know that there
are situations in which the borrower will be unable to meet her obligations. If
the latter occurs, the borrower is declared bankrupt and lenders take over to
audit the failed business and recover as much as possible. These are exactly the
features one finds in an optimal incentive-compatible contract:
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* a fixed repayment R and no monitoring as long as this payment is made,
o if the borrower does not fulfil her repayment obligations, auditors come
to the fore and lenders take control of the remaining assets.

Because of monitoring costs, it is optimal to specify a constant repayment,
even if it is known in advance that there are states where the project will fail to
produce enough returns to keep this promise. In this view, bankruptcy is not a
‘misjudgement’ of the borrower or lender or an inadequacy of contracting but
a natural consequence of an asymmetry of information about a project’s
actual return.

6.3 Credit Rationing

Asymmetric information concerning the results of investment projects leads
to the particular form of loan contracts stipulating a fixed repayment with a
bankruptcy provision in the event of default. In this section, we investigate
some of the implications that follow from this special form of contract. In
particular, we demonstrate that a loan contract induces borrowers to take
more risk than lenders would wish them to. These differences in incentives
may lead lenders to ration credit to otherwise identical borrowers.

To simplify analysis, we abstract from monitoring costs which were neces-
sary to justify the form of the loan contract. With this modification, one can
write 71(s,R) = max{ f{s) — R, 0} for the state-dependent return of the entrepre-
neur and p(s,R) = min{ R, f(s)} for the state-dependent repayment of the
lender. As before, the credit contract shares the project return f{s) among bor-
rowers and lenders: 7i(s,R) + p(s,R) = f(s). Note that we neglect any loss due to
monitoring costs.

A loan contract specifies non-linear return functions for borrowers and
lenders. Figure 6.9 shows graphs of the return functions for the borrower
and the lender. Notice that a continuous set of states has been used to achieve
a clearer diagrammatic exposition. A lender’s return schedule is a con-
cave function, for a lender participates with a constant amount R if no bank-
ruptcy occurs. A lender is therefore particularly concerned about the lower end
of the distribution. On the other hand, a borrower has a convex return sched-
ule. In particular, once bankruptcy occurs, a borrower is no longer interested
in the degree of bankruptcy. This creates a conflict of interest between bor-
rowers and lenders in regard to the choice of contract. This conflict is demon-
strated in Figure 6.10 where the entrepreneur can choose one of two projects,

faand f5.
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Fig. 6.9

Clearly, the entrepreneur as borrower prefers project f; because it yields a
higher return in every state. The lender however, prefers project f, since it
yields a higher return in the case of bankruptcy. Though the two projects used
to illustrate the problem in Figure 6.10 are extreme cases where a change from
project A to B will lead to return schedules that can be ordered by first-order
stochastic dominance, it is not difficult to see that, for any projects that are
mean-preserving spreads, the borrower will always prefer the more risky and
the lender the more secure project.
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x5(s.R)

_. malsR)

Fig. 6.10

This conflict of interest, arising from the nature of the loan contract, makes
credit markets different from other markets for goods and services. In com-
bination with other informational problems, it can explain phenomena such
as credit rationing. Credit rationing has been advanced as a cause of the limited
adjustment consumers make to shocks affecting their lifetime incomes but it
was difficult to explain why lenders would react to the excess demand for loans
by rationing demand rather than by raising interest rates.

Stiglitzand Weiss (1981) suggested a reason why lenders might not find it in
their interests to raise interest rates in order to reduce excess loan demand. If
lenders cannot observe the riskiness of a loan applicant’s project, they may
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refrain from using the price mechanism (i.e. raising the interest rate) since this
may lead to an adverse selection in respect to the project’s degree of riskiness.
The following model illustrates this problem.

Consider a bank, the lender, facing a group of Nloan applicants. Each loan
applicant needs one unit of capital to finance a project but has no funds of her
own available. For simplicity, assume that there are just two types of applicants
who are distinguished by their projects’ degrees of riskiness. There are only two
states, a high-return state and a low-return state, denoted by Hand L, respect-
ively. For simplicity, assume that the probability of each state equals 0.5. Let
(x45,x%) be the state-contingent returns of an applicant of type t, t=1,2.
Assume further that the distribution of the project returns of type-2 applic-
ants forms a mean-preserving spread of the return distribution of type-1
applicants, i.e.

x}<xj<xh<xly
and
u'=0.5-(x} +xp) =05 (x} + x}) = p2.
Finally, assume that it is common knowledge that half of the applicants are
of type 2, but that the bank cannot distinguish applicants according to their

type. The bank can raise funds from deposits at a deposit interest rate I = (1 + 1)
according to a linear supply schedule:

n=oa-1I, a>0.

Competition among banks forces a bank’s expected profit to equal zero, i.e.
Ep(-,R) = I. We assume further that, in the case of bankruptcy, the bank can
seize some value C from the bankrupt customer which is independent of the
project’s success or failure. The value C may derive from some asset which the
customer posts as collateral or from bankruptcy laws allowing a creditor re-
course to the bankrupt debtor’s private assets.

With these assumptions, one obtains the following expected return sched-
ule for a loan applicant of type t, t = 1,2, as a function of the contracted inter-
est rate R:

Em(s,R,C) = Emax{x{-R,-C}

0.5 [xf;+x{] - R for x{+C2R

0.5 [x;-R-C] for x;+C2R>xj+C
-C for R>xjj+ C.

A loan applicant will apply for a loan if(he.cnmracted interest rate R is such
that the expected profit is non-negative. Let R'be the interest rate for which the
expected profit equals zero: En(s,R',C) = 0. As Figure 6.11 shows, the expected
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return for this customer is positive for all R < R and negative otherwise.
Hence, a customer of type t will apply for one unit of funds if R < R'. Other-
wise her demand will be zero.

Astraightforward calculation yields R' = x, — Cas the critical value for mar-
ket exit of a customer of type t. Clearly, applicants with the riskier project will
have a higher critical interest rate: R2 > R!. High-risk customers therefore stay
in the market much longer than low-risk customers.

Similarly, one can derive the expected return to the bank of a loan to an ap-
plicantof type t, t = 1,2:

Ep'(s,R,C) = Emin{R,x{+ C}

R for x{+C2R
={0.5-[x+C+R] for xfj+C2R>x{+C
0.5 [x;+x{]+C for R>xf;+ C.

Figure 6.12 displays the expected return to the bank from a loan applicant of
typet.

Given our assumption that the bank cannot distinguish its customers, one
obtains the expected return from a loan as the weighted average of the ex-
pected return from the two types of customers so long as both types of cus-
tomers stay in the market. Figure 6.13 shows the expected return from a loan
taking into account the bank’s ignorance about the type of customer it faces.

The bank’s expected return function is obviously not monotonic in the loan
interest rate R. While it is clearly increasing as long as both types of customer
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remain in the market, it drops as soon as the low-risk applicants leave the mar-
ket. It then rises again until the high-risk customers exit too. In such a situation
it is clear that banks will not simply raise interest rates when they face an excess
demand for loans. The reason is that higher interest rates may not decrease de-
mand but, in addition, may change the mix of applicants in a manner detri-
mental to the bank.

Given our assumption that competition forces the expected return from a
loan to equal its opportunity cost, E(s,R,C) = I,the bank may not even be able
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to raise more funds by raising the loan interest rate. Since the expected return
from a loan is not monotonic, the bank cannot offer increasingly higher de-
posit interest rates in order to attract more funds. The loan supply as a func-
tion of the loan interest rate Ris

L(Ep(sR.C) ) = a- Ep(sR.C), a>0.

This supply function is depicted in Figure 6.14 together with the demand func-
tion.

=z

L.

2
a-Ep(s.R*.C)
a-Ep(s.R'.C)

Fig. 6.14

An easy computation confirms that
Ep(5,R1,C) =025 - [x} + x} +2- xk] > 025 - [x} + x}] = Ep(s,R2,0),
asindicated in the figure. A bank therefore has no incentive to increase the loan
interest rate beyond R! because its expected return unambiguously falls. At R1,
however, there is excess demand for loans and some applicants will be denied
a loan. The bank may even decline applications from low-risk customers be-
cause it cannot influence demand by changing price without simultaneously

b 4

the mix of appli to its di ¢

Notes on the Literature

The failure of competitive markets on account of asymmetries of information
was first analysed by Akerloff (1970). Rothschild and Stiglitz (1976) studied
optimal insurance contracts with asymmetric information. The importance of
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monitoring costs for the contract structure was discovered by Townsend
(1979) and applied to credit markets in Gale and Hellwig (1985).

There is an extensive literature on credit rationing. Clemenz (1986) con-
tains a good introduction to this literature. The model discussed in Section 6.3
is drawn from Stiglitz and Weiss (1981).

The contracts discussed in this chapter were selected for their importance in
financial economics. It should be clear, however, that there is a large literature
on contracts under asymmetric information which we have not covered here.
Of particular interest for financial economics is the theory on incomplete con-
tracts. Hart (1995) explained the financial structure of the firm by the im-
possibility of writing complete contracts that specify all possible contractual
contingencies. By allocating the control rights of ownership in default states to
the debt holders and in all other states to the equity holders, it is still possible
to provide incentives for the firm’s managers.

Exercises

1. Suppose that all consumers of a community own cars valued at $10,000. Each
of them may lose the car in an accident. Risk-pref es of these can
be described by a von Neumann—Morgenstern utility index u(W) := VW, where
W denotes the consumers’ wealth.

Suppose that consumers differ in their likelihood of suffering an accident: 80
per cent of consumers have a 10 per cent loss probability, while the remaining con-
sumers are twice as likely to suffer a loss.

(a) A risk-neutral insurance company which cannot distinguish the con-
sumers offers full loss insurance for $1,000. Determine whether both types of
consumers will buy such a contract and determine the expected profit of the
insurance company.

(b) Suppose that petitive p forces the insurance company to raise
the premium if it makes an expected loss and to lower it if it makes an expected
profit. Show that there is no premium at which the insurance company can
offer full insurance and make an expected profit of zero.

(c) What could the insurer do to overcome the adverse selection problem in
this economy?

2. Reconsider the scenario of Exercise 1.

(a) Draw a diagram showing the indifference curves of the two types of con-
sumers over state-contingent wealth.
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(b) Show in a diagram the state-contingent wealth combinations that can be
achieved by contracts offering full insurance and varying only the insurance
premium.

(c) Show in a diagram the state-contingent wealth combinations that are
individually rational for both players.

(d) Show in a diagram two state-contingent wealth combinations that are
incentive-compatible and two that are not incentive-compatible.

3. Consider the problem of a monopolistic insurer discussed in Section 6.1.2 which
is repeated here for convenience:

Choose (x§,x¥) and (x%,x}) to maximize
0 [y (W=-L-x{)+(1-my) - (W=x)] +(1-6) - [, - (W= L-x})
+(1=m) - (W=-xf)]

subject to
My - u(x) + (1- ) - u(x¥) 2 my- u(W=L) + (1= m) - u(W),  (IRy)
o u(xk) + (1=7) - u(xf) 2m - w(W-L)+(1-m)-u(W),  (IR)
Ty u(x) + (1= my) - u(x¥) 2 my - ulxh) + (1 - my) - u(xf), (ICy)
e () + (L=m) - ulxf) 2 e ulxf) + (1= my) - u(x). (1cy)

(a) Write down the Lagrange function of this problem and derive the first-
order conditions for an optimal contract. Are these conditions sufficient?

(b) Using the first-order conditions, show that the IR, constraint must be
binding in any solution of this problem.

4. Consider firms thh different investment projects. Each pro)ecl requires $50 of

funds. Projects are distinguished by the following return distrib
probabilities 0.5 0.5
project 1 $50 $90
project2 $30 $110

Assume that there are ten firms with project 1 and ten firms with project 2.
Potential lenders cannot distinguish the two types of firm when deciding on
whether to grant a loan or not, but are equally likely to face a firm with project 1
or one with project 2.

(a) Determine the expected returns and the variances of these two projects.

(b) A bank is willing to provide funds for a return of Rif firms provide a col-
lateral of $20. Draw a diagram showing the expected return of the bank from
each of the two projects as a function of R.
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(c) Show in another diagram the expected profit of each type of firm from
its project as a function of R. A firm demands a loan only if the expected profit
is positive.

(d) Suppose the bank can raise $400 at an interest rate of 20 per centand an-
other $800 at an interest rate of 50 per cent. Draw a diagram with the supply
function of the bank. Suppose the bank would behave as a price-taker and offer
funds at marginal cost. Determine the loan market equilibrium.

(e) Check whether the equilibrium return derived in (d) allows the bank to
make a positive expected profit. Show that credit rationing will occur and ex-
plain why the bank will not provide more credit even if firms are willing to pay
a higher return R.

5. Reconsider the situation of the Exercise 4 with the following modifications: Each
project requires $100 of funds and projects are distinguished by the following re-
turn distributions.

probabilities 05 [H]
project 1 $100 $180
project2 $60 $220

(a) A lender offers funds at a return of Rif firms provide a collateral of $40.
Draw a diagram showing the expected return of the bank from each of the two
projects as a function of R. Show in another diagram the expected profit of
each type of firm from its project as a function of R. Determine the aggregate
demand function for loans if a firm demands a loan only for positive expected
profits.

(b) Suppose the bank can raise $400 at an interest rate of 20 percentand an-
other $800 at an interest rate of 50 per cent. Draw a diagram with the supply
function of the bank. Suppose the bank would behave as a price-taker and offer
funds at marginal cost. Determine the loan market equilibrium.

6. A risk-neutral entrepreneur has a project that requires an investment of $100
and yields the following distribution of returns:

returns $70 $90 $100 $120 $140  $160

probabilities 005 010 0.10 025 030 020

A risk-neutral potential lender with an opportunity cost of 10 per cent interest
would be willing to lend the required money but has to employ an auditor at a cost
0of $10 to monitor the return of the entrepreneur. If the lender were to enter a loan
contract with the entrepreneur she would have to rely on the entrepreneur’s
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statement about the return achieved or have to spend the money to audit the
emrepmneur.

(a) What must a contract between the entrepreneur and a lender specify?
‘What conditions have to hold for a contract to be feasible in each state?

(b) For a given contract, write down the return of the entrepreneur and the
lender in a particular state of the world.

(c) Give a definition of ‘incentive-compatibility’ in regard to the return re-
ported by the entrepreneur. Show that incentive-compatibility requires a con-
stant repayment for a loan whenever no monitoring takes place.

(d) Consider a‘standard debt contract’ that requires the entrepreneur to pay
the lender $120 or to declare bankruptcy with the consequence that the lender
audits the entrepreneur and takes the remaining value of the project. Check
whether the standard debt contract is incentive-compatible. Determine the ex-
pected return of this contract for the entrepreneur and the lender.

(e) Show that the contract under (d) maximizes the expected return of the
entrepreneur subject to the individual rationality constraint of the lender.
Hint: Check whether it is possible to raise the expected return of the entrepre-
neur by changing the contracted amount of $120.

7. A bank faces a large number of customers with different investment projects
ke [0,2-a]. Each project requires one unit of funds to produce the following state-
contingent return:

fisk)=a+k-(s-0.5).

The distribution of states is uniform on the interval [0,1].

(a) Determine mean and variance of a project of type k.

(b) Assume that the bank offers a standard debt contract at a return R with
a collateral C. Determine the expected profit of a firm and the expected return
of the bank for a project of type k. Show that the expected profit is increasing
in kand decreasing in R.

(c) Assume that the firms carry through all projects with positive expected
profit. Determine the critical level of k, k(R), such that all projects k > k(R) will
be adopted. Assume further that the different types of projects k are distrib-
uted uniformly on the interval [0,K]. Show that the expected return of the
bank is non-monotonic in Rif the adverse selection of projects is taken into ac-
count. May this lead to credit rationing?
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7

DEPOSIT CONTRACTS
AND BANKING

In this chapter,a model of a bank is presented which focuses on the liquidity aspect of
the banking business. We will show that there are efficiency gains from investing
liquid funds into long-term illiquid assets. However, deposit banking which achieves
these efficiency gains is vulnerable to bank runs. Furthermore, uncertainty about a
bank’s investment projects and adverse information may trigger a bank run. Before
turning to these issues, however, we need briefly to discuss the role of ‘money’ in an
economy.

7.1 Money as a Means of Payment

The theory of financial markets developed in the previous chapters leaves no
room for financial institutions like banks that one observes in all modern
economies. If trade in goods and assets is carried out only after all prices have
been determined such that the value of purchases equals the value of sales,
then there is no need for settlement of net trading positions. The market equi-
libsia studied in the first part of this book were frictionlessin this sense. In real
economies, trade takes place sequentially and buyers and sellers cannot expect
to exchange goods and assets such that the value of sales equals the value of
purchases for any two traders. Hence, usually, a credit relationship will arise
between buyers and sellers in the course of any exchange. If trade took place
only after equilibrium prices in all markets had been established, this would
not matter since traders could be certain that the values of purchases and sales
among all market participants would balance.

In actual economies, trade of goods and assets is not pre-co-ordinated by a
general equilibrium price system. Hence, buyers and sellers must accept net
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credit positions based on trust that the trading partner will and can honour the
obligation or they will have to settle the credit position by accepting some
means of payment, that is money. In reality, exchanges of goods and assets are
therefore usually accompanied by transfers of money. In the past, money was
usually a good like gold which was easily storable and widely accepted in ex-
change. In modern economies, assets or portfolios of assets may serve the same
purpose.

Money has value in exchange because it has a fairly stable price relative to the
most commonly traded goods. It allows people to trade with each other who
do not have goods or assets that they mutually desire. If money has a stable
price relative to goods and assets, a seller will not hesitate to accept it in com-
pensation for a sale, and a buyer need not find something that this particular
seller is willing to accept in exchange. The value of money lies in its capacity to
facilitate trade and not in its value for an individual in production or con-
sumption.

Using a commodity or an asset as money, however, has a high opportunity
cost since using it for exchange prevents its use in production and consump-
tion. Furthermore, there is a risk of losing the asset while using it in exchange.
Thus, there is an advantage in using claims to the commodity or asset that serves
as money instead of the actual asset or commodity itself. By depositing their
money for a fee with a trader who agrees to keep it and to pay it out on the
depositor’s instruction, the depositing person has the liquidity of holding the
medium of exchange without actually having to carry it. In addition, if not all
deposits are required for transactions, the agent can invest some of these funds
to achieve a return which can be paid back as interest to the depositors.
Investment of these excess deposits reduces the opportunity cost of holding
money, but it requires a precise prediction of withdrawals. Hence, such a pay-
ment system depends crucially on the trustworthiness of the deposit-taking
agent.

A bankis a firm specializing in deposit-taking. This busi has obvious in-
creasing returns to scale since a small number of employees can monitor and
administer the deposits of a large number of customers. To be able to pay out
all its deposits on demand, however, the bank would have to hold all the de-
posited money ready for withdrawal. Under normal business conditions, only
a fraction of the deposited money will be called upon in a given period and a
substantial part of aggregate deposits would remain unproductive as a back-
up for potential withdrawals which usually do not occur.

For that reason, banks usually hold reserves of money equal to the average
amount required in a particular period and invest the rest of the deposited
money to achieve investment returns from it. Such behaviour creates two types
of risk:

200



Deposit Contracts and Banking

(i) Liquidity risk: even with a perfectly riskless investment, the bank may
face a liquidity crisis if for some unforeseen reason more deposits are
withdrawn than the bank holds reserves.

(i) Investment risk: If the investment is risky, the bank may make losses
which will make it impossible to repay its liabilities to the depositors
even in the long run.

In regard to investment risk, banks are no different from other firms. A bad
investment decision may cause a firm to go bankrupt because it cannot pay
back a loan at the specified date. Liquidity risk, however, is a problem specific
to the nature of deposit contracts. Deposits are due on call because of the
liquidity needs of the depositors and not at a predetermined date.

Though it is conceptually easy to distinguish between these two types of
risk, it is extremely difficult to separate the two causes of a bank crisis in prac-
tice. This is because depositors’ withdrawal behaviour is related to the invest-
ment performance of the bank and the return on a bank’s investment depends
on the accuracy of its predictions of withdrawals.

7.2 Liquid and llliquid Assets

Imagine an economy which extends over three periods and where agents have
only two types of assets to store value. The first asset, called money, allows the
holder to store value without gains or losses. A unit of money can be used in
each period for purchases of goods and other assets. In contrast, investment in
the second asset, called long-term project or illiquid asset, requires a two-period
commitment of funds: one unit of money invested in the illiquid asset in
period tearns a return @, in period t + 2 which exceeds the return from hold-
ing money (o, > 1).If the project has to be liquidated in period ¢ + 1, however,
only a liquidation value ¢, less than the return from holding money (o < 1)
can be realized. All agents in this economy have access to these two assets and
can buy them without restriction according to their preferences.

Assuming a liquidation value of the long-term project, &, which is less than
the discounted present value of the future certain return, o, makes some im-
plicit assumptions about market conditions. Though the return on this project
is certain, it must not be possible to sell claims to it in the intermediate period
at a price above @;. The reason for this could be the absence of established
markets for such claims. Organizing markets can be an expensive activity, in
particular for heterogeneous goods like real estate and buildings. In addition,
thin markets may give market power to some traders which may make it
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impossible to realize the full present value of an investment. Such market im-
perfections are not explicitly modelled here. They are, however, necessary to
justify the assumption that the realizable value of the long-term investment is
less than its present value. On the other hand, such market imperfections are
the essence of a distinction between liquid and illiquid assets.

Traders in this economy are identical consumers who plan for three periods,
t=0,1,2. Initially they hold 1, units of money. They are risk-neutral and max-
imize wealth in period 2, the final period of their life. To model sudden liquid-
ity needs, assume that, in period 1, consumers learn privately about an
individually available investment opportunity, called individual project, with
return rate 6. A fixed proportion 1 of agents will obtain an individual project
with a high return rate 6 = 3, while the rest of the population receives a pro-
ject with a low return rate 6 = 8. Consumers with a high-return private
project want to have money available in period 1 for their private investment
opportunity. Consumers with the low-return private project prefer the long-
term investment project with return ,. This yields the following return rate
ordering:

B> o> pB21> 0

The following diagram summarizes the return patterns of the different types
of investment in this economy.

Money -1 1
-1 1

Long-term -1 a 0

project 0 @

Individual -1 Boby

project

—_——— «—>t
0 1 2

Negative numbers indicate the price that a consumer has to pay for a unit of
the respective investment and a positive number indicates the per-unit return
that a consumer receives.

In period 0, each consumer knows the distribution of return rates for the
private projects, (i, 1 — t; B, B,). The realization of 6, however, is privately ob-
served only. Ex ante, in period 0, each agent has the same chance of obtaining
a high-return individual project. Hence, there is an expected return of

we Bt (=) - B
from holding money in period 0 and then investing it in the private project in
period 1.
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To model a conflict between investment opportunities and liquidity needs

W B+ (=) - B> 0> 0y By
will be assumed. This implies immediately that consumers will hold only
money, in spite of the high return earned from the illiquid asset. This assump-
tion models a situation where the chance of a high-return rate from the indi-
vidual project is so attractive and the loss from early liquidation of the
long-term project is so high that consumers will decide against investing in the
illiquid asset.

In period 0, each consumer owns the same initial endowment m, of money.
We will assume further that, relative to the total amount of funds in the eco-
nomy, each consumer has a negligible amount to invest.! Hence, an individual
consumer’s investment behaviour has no effect on the aggregate amounts of
investment whereas a group of consumers may influence aggregate quantities.
Denote by I the total number of consumers. Then My = m; - I is the total
amount of money available for investment in the economy.

To see what role the assumption of consumers holding private information
about the return rate 6 plays, consider the case where this information is pub-
licly observable. If it were known in period 1 who actually obtains the high-
return individual investment project, an obvious Pareto improvement on the
allocation where the whole population holds money would be achieved by
pooling all agents’ initial wealth M,, investing the fraction (1 — u) - M, in the
long-term project, and holding 1 - M as reserves in the form of money.

Once the type of the agents’ individual projects are known in period 1, con-
sumers with a return rate 3, will receive a pay-out m, which they can invest
in their private projects. Consumers with a low 3, will obtain no pay-out
in period 1 and earn the return o, in period 2. This scheme would yield an
economy-wide expected return rate of 1 - B + (1 — 1) - @, exceeding the ex-
pected return from holding money - B, + (1 - ) - B,. Each agent would have
a higher expected return ex ante and, ex post, a return which would be at least
as high as that in the absence of this scheme.

Though such a scheme dominates an allocation where agents hold only
money, from an ex ante perspective it is not the best arrangement for con-
sumers. Since consumers are assumed to be risk-neutral and prefer to hold
money rather than to invest it in the illiquid asset in period 0, the optimal re-
distribution scheme would collect all initial money holdings in period 0, hold
the total amount as reserves and redistribute it in period 1 to those agents with
a high-return investment project. If the aggregate endowment of money M,
is proportionally distributed to the consumers with return f,, then each

1 Formally this is modelled by the ion of a i of
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consumer in this group will have My/(11 - I) = mg/ut to invest in the individual
project in period 1. This scheme generates an expected wealth of 3 - ny = -
[B¢- my/u]) + (1 — 1) - 0 in period 0 which exceeds both the expected value of
holding money [u - B¢+ (1 - ) - B;] - m, and the expected value from the
previous scheme (1 - B + (1 - 1) - 0] - mg because ;> a,. Hence a com-
plete redistribution of money to the high-return consumers would be optimal
ex ante if it were possible to observe the type of a consumer’s investment pro-
ject. The reason is that the private investment project with return 3 offers the
best return in this economy. Being risk-neutral, it is optimal for consumers to
put all money in this project even if there is a risk of losing everything with
probability (1 - p).

On the other hand, this scenario makes it completely obvious why this
scheme does not work if the type of a consumer’s project is private informa-
tion. Even if consumers agree in period 0 to redistribute all funds in period 1
to the consumers with the high-return project, any consumer who afterwards
obtains the low-return project and, hence, would miss out on all pay-off in
period 2, would have good reason to report a high return in order to reccive a
share of the aggregate funds. If all low-return consumers behaved in this way,
the scheme would break down and everyone would end up with the allocation
that would arise had they decided to keep their money in the first place.

7.3 The Optimal Contract

These considerations raise the question of what kind of scheme or contract
will be optimal given the informational constraints. Private information of
consumers about their returns implies that a redistribution of funds con-
tingent on the type of the individual project is possible only if there is no in-
centive for a consumer to misrepresent this information. Thus, an optimal
contract has to maximize the expected pay-off of the consumers in period 0
subject to feasibility constraints and to incentive constraints.

Denote by R the part of the total funds M, held as money, and by K the
amount invested in the illiquid project. Let &(6) be the amount of money paid
back in period ¢ to a consumer of type 6, where @is either B or 3. A contract
must specify an aggregate investment strategy (R,K) and the payments to con-
sumers with high- and low-return projects respectively, (&(8,),&,(5:),6,(B,)»
&(B)).

The optimal contract (R,K.£,(B,).&,(Be).&)(B),&,(B,)) must maximize the
ex ante expected utility of consumers
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K [Be &1(BD) + &(BA) + (1= p) - (B, &i(B) + &:(B))

subject to constraints which guarantee that (i) pay-outs are feasible for the in-

vestment strategy, and that (ii) in period 1 when consumers know their types,

no consumer has an incentive to pretend to have any other than her true type.
Feasibility of the contract requires

R+ K=M,,
Z<SR+0oy-K  and
(H-&B)+ (=) - &BI) - =05 [K—ai - max{0,Z- R}]
\
+ max{0,R- Z},

where Z = [+ &,(By) + (1= p) - &,(B,)] - I denotes the aggregate amount of
money paid out in period 1.

The return of the individual project is private information to the consumer.
To guarantee truthful revelation? of this information, the contract must be in-
centive-compatible, i.e. provide no incentive for a consumer to lie about the
type of the project. Therefore, pay-outs in period 1, when the consumer knows
her type, must satisfy:

B £(Ba) + &(Ba) 2 Be - Ei(B) + &x(By)

and

Be+ &i(B) + &(B) 2 B, &(BD) + &(Bo)-

The first inequality guarantees that a consumer of type f5; will prefer the pay-
ment schedule (&,(5,), &(,) ) that the optimal contract specifies for her over
the payment schedule (&,(8,), &(3,) ) which is designed for the other type.
Similarly, the second constraint makes it optimal for a consumer with a low-
return project to claim the payment schedule (&,(B,), &,(f,) ) rather than
(&(Ba) &(Ba) )-

It is not difficult to derive the following properties of an optimal contract
(R, K*, E(Ba), E3(Ba), E1(B)E3(B) ):

(i) The optimal level of reserves is exactly the quantity of money to be paid

outin period 1, R* = Z* = [u- &}(By) + (1 - p) - E1(B)] - L.
(ii) Itis never optimal to make a pay-out in period 1 to a consumer with a

low-return project or to make any payment in period 2 to a consumer
with a high-return project, &}(B,) = £3(B,) = 0.

2 Itis a well-known result that there is no loss of generality in restricting attention to direct mech-
anisms which require an agent to report her type; compare e.g. Laffont (1987).
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To see that (i) is true, suppose reserves exceed pay-outs in period 1, R' > Z*.
Reducing reserves to R* = Z* will leave (§1(5,),&1(B,) ) unchanged but will
earn an additional return (@, — 1) - (R' = Z2*) which can be distributed to
consumers in period 2. Hence R’ > Z* cannot be optimal. For R’ < Z*, the
amount Z* — R’ must be obtained from early liquidation of the illiquid asset.
This is costly, since liquidation of one unit of investment returns only a,
units of money. Increasing reserves to R* = Z* will yield an extra return of
a, - ((1/ey) = 1) - (Z* = R') which can be shared out in period 2. Thus,
R’ < Z* cannot be optimal either.

To check claim (ii), suppose that £}(B,) > 0 holds. Reducing the pay-out in
period 1 to consumers with a low-return project by €, 0 < € < £}(3,), the con-
tract (E3(B), £3(B), E1(B) — € E3(B) + ¢, - €) withreserves R = R* —¢- (1 —
M) - I'and an investment K' = K* + €+ (1 — ) - I is feasible. This contract,
however, is strictly preferred by consumers with a low-return project because
B, < @, holds. Similarly, if £5(5,) were strictly positive, reducing this pay-out
by &,0 < £ < &3(B,), yields the following feasible contract: (£(8,) + & &E3(B) —
o, - & &1(B), £3(B,) ) with reserves R' = R* + £ it - I and investment in the
long-term project K' = K* — € 1 - I. Since fB; > @, holds, a consumer with a
high-return project will prefer this contract.

This result allows us to simplify the optimal contract problem. Substituting
for R* = 1~ £4(B) - Tand K* = [(1- ) - £5(B) - /e, in K* + R* = M,
simplifies the feasibility constraints to

o - Ei(B) + (1= ) - §5(B) = o - (My/), (7.1)
and the incentive-compatibility constraints to
Be- &1(Bo) 2 &3(B) 2 B, - E1(BY).- (72)

An optimal contract can therefore be determined as a solution to the fol-

lowing, much simpler, optimization problem:
Choose (&,(Be),&:(B,) ) to maximize
e Be- &(BD) + (1-p) - &(B)
subject to (7.1) and (7.2).
Figure 7.1 illustrates this problem and its solution.

The indifference curves of the objective function are linear and steeper
than the feasibility constraint because f; > o, holds. The optimum occurs
where the lower incentive constraint is binding, £3(8,) = B, - £1(f,). Substi-
tuting this into the feasibility constraint (7.1), one obtains the following op-
timal contract
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)= %2 () =
&i(Ba) “Hamt(-m B mg,  E3(B) =0,
“(B) = «(B) = B .
&i(B) =0, &(B) o+ (1-p) - By Mo,
R* K 1-p)- M,

— % .. e A
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One can easily check that the following inequalities hold:

mo < §1(Bd) < E3(B) < @ - m.

The optimal contract specifies that consumers with a high-return project ob-
tain a repayment in period 1 which exceeds their initial money holdings. A
low-return consumer gets a larger pay-out in period 2 than a high-return con-
sumer in period 1 but generally less than @, the return on investments in the
illiquid asset. This is optimal because consumers favour the highest pay-out
possible in period 1 given the incentive-compatibility constraints. Thus, an
optimal contract requires the payment of less interest on deposits than on
long-term savings, (&3(8,) — mg) > (§1(B,) — mp), in order to prevent early
withdrawals of consumers with low-return projects.

7.4 Banks as Deposit-Taking Institutions

The scenario presented in the previous sections models the situation in which
banks do business: consumers with random short-term liquidity needs do not
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use long-term investment opportunities. Furthermore, an optimal contract
has some features of bank deposit contracts: banks accept call deposits and in-
vest part of these deposits in long-term projects. Withdrawals of deposits
occur randomly according to the needs of depositors. The feasibility of the
bank’s business depends on the predictability of aggregate withdrawals.

Bank deposit contracts provide a way to implement the optimal contract
derived in the previous section. Optimal contracts, however, do not describe
the interactions of consumers completely. In particular, an optimal contract
does not describe the pay-offs of a consumer if some or all other consumers
deviate from the behaviour suggested by the optimal contract. Here, we need
to specify the pay-offs that occur if consumers with a low-return project also
withdraw their deposits.

Suppose that withdrawals exceed a bank’s reserves. As a consequence, the
bank has to call back loans, i.e. it has to liquidate part or all of its long-term in-
vestment whichi is costly because ¢, < 1 holds. Such early liquidation will re-
duce the interest that can be paid to depositors who do not withdraw in period
1. Falling interest rates, however, may in turn induce depositors to withdraw
who would not have done so at the original interest rate. This can create a
spiral of withdrawals and early liquidations ending in a bank run.

A deposit contract specifies a repayment of (1 + r;) units of money on call
per unit of money deposited in period 0, and a repayment of (1 + r;) units of
money in period 2 for each unit deposited in period 0 and not withdrawn in
period 1. Thus, a deposit contract is characterized by a pair of interest rates
(ry»ry). If a proportion  of total deposits is withdrawn in period 1 and if
the bank holds (1 + r;) - 4 per unit deposited as reserves and invests [1 —
M- (1 + n)] per unit of deposit in the illiquid long-term project, then the fol-
lowing set of interest-rate pairs will be feasible:

Q) ={(rpr) eR?In s (- 1) -y ﬁ nh
For interest rate pairs (r;,r;) € Q(,,4) which satisfy
r,<(az—1)—al-ﬁ~r],
the bank will make a positive profit. If an equality holds, the bank’s profit is
zero. Interest-rate pairs satisfy the incentive-compatibility condition if
By- (14 1)2(1+r)2p,- (1+n) holds. The interest rate combinations
(r»1) in the shaded area of Figure 7.2 are feasible and incentive-compatible.

The optimal contract of the previous section corresponds to the interest-rate
pair (r}, ). It requires payment of as much interest in period 1 as is incentive-
compatible. Since the optimal contract maximizes consumers’ welfare, the
bank will make no profit. The analysis of the next sections, however, is sup-
posed to apply for general bank deposit contracts and will therefore also cover
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the case of banks which are profitable. Hence, general feasible and incentive-
compatible deposit contracts (r;,r;) € Q(oy,u) will be the object of our study.

Whether a contract (r,,r,) € Q(04,1) can be carried out as planned depends
crucially on the correctness of a bank’s prediction of aggregate withdrawals in
period 1. If the withdrawals in period 1 deviate from the predicted amount,
which is held as reserve, the interest rate actually paid in period 2 must be
lowered. To study the implications of incorrect predictions, one has to specify
the actual repayment schedule of a deposit contract (ry,r,).

Denote by D the total amount of funds deposited with the intermediary in
period 0 and let Wbe the amount withdrawn in period 1. The returns which a
deposit contract (ry,r,) actually pays in period 1, p,(r),r;; W,R, D), and in period
2, p,(r,,r3W,R, D), depend on the amount of deposits D and reserves R as well
as on the amount of funds withdrawn in period 1. If the amount of deposits
withdrawn in period 1 is not equal to the reserves held by the bank, then the
actual return in period 2 will be affected.

It may happen that the amount that the bank can liquidate, @ - (D - R), to-
gether with its reserves R is insufficient to meet the contracted payments in
period 1, (1 + r;) - W. An explicit description of the actual repayment scheme
(p1(+),p,(*)) therefore requires assumptions about how funds are to be distrib-
uted among depositors if funds that can be liquidated in period 1, R + ; - (D
- R),areinsufficient to pay the contracted amount (1 + r;) - W. For simplicity,
it is assumed here that remaining funds are shared out proportionally to the
claiming depositors.? This assumption implies the following actual repayment
schedule for period 1:

3 si

dto be risk I proportional rationing sch
an anonymous stochastic rationing scheme, as the sequential service constraint in Diamond and
Dybvig (1983).
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(1+r) for(1+nr) - WS[R+a,-(D-R)]
[R+ o (D-RJ/Wfor(1+r) - W>[R+0o,-(D-R)]
=min{(1 + r),[R+ o, - (D-R)]/W}.

Given these actual repayments in period 1, the remaining value of the bank in
period 2 will be:

V(r;W,R,D) = max{0, [@, - (D~ R) - (a,/e) - max{0, (1+ r,) - W— R}
+max {O,R— (1 +r,) - W}

1f the amount paid out in period 1, (1 + r,) - W, equals its reserves R, then the
bank’s remaining value will be @, - (D - R). For pay-outs that are less than re-
serves, R— (1 + r) - W> 0, the bank misses out on returns which would have
been earned by investing this amount in the long-term project. On the other
hand, if reserves are less than pay-outs R— (1 + ;) - W < 0, then some invest-
ment in the illiquid asset has to be liquidated prematurely at a cost. Therefore,
V(r;W,R,D) reaches a maximum for (1 + r;) - W= Rand becomes zero for all
W2Ws=[o,-D+(1-0)-RI/(1+n).
The actual return that the bank can pay in period 2 is therefore

ParrsWiR,D) = min {(1 + ry), V(r;W,R,D)/(D - W)}.

Pi(rrsW,RD) =

It will be equal to the contracted return (1 + r,) if the bank correctly predicts
withdrawals W= u - D and holds reserves R= - (1 + r,) - D. Figure 7.3
shows the actual return structure of the deposit contract as a function of with-
drawals W.

The main question arising in the context of these deposit contracts concerns
the implications of a possible divergence of actual from contracted returns for
consumers’ decisions to deposit or not to deposit in period 0, and to with-
draw or not to withdraw in period 1. If the contracted return rates (r,,r,) are
incentive-compatible, then only consumers of type B will withdraw, while
consumers of type B, will leave their deposits with the bank, provided the bank
can pay the contracted return rates. With actual returns deviating from con-
tracted ones, however, consumers with a low-return project may also find it
optimal to withdraw their deposits in period 1. Given the actual return sched-
ules for arbitrary aggregate withdrawals, one can analyse how consumers
behaviour will change as the aggregate level of withdrawals and, therefore, the
actual return rates vary.

Given that no consumer wants to invest directly in the long-term project, a
consumer’s strategy is described by the amount d; deposited with the bank in
period 0 and type-contingent withdrawals in period 1 (w;(B,),wi(B)) ). The set
of strategies is given by the following inequalities, 6= f, B
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0<d;< my, 0<w(6) <d,

The amount my — d; is held as money. The pay-off function of consumer i fora
deposit and withdrawal strategy (d;,w,(B,),w;(8,) ) can be written as

Pi(dywi(Bwi(B) )= [+ B+ (1 =) - B - (my— dy)
+ 1 [Ber pr() - wiBo) + pa(-) - (di— wi( B))]
+ (=) - (B pi() - wilB) + pa() - (di— wiB))).

Note that the actual returns (p,(-),p(*) ) are independent of a consumer’s
choice by virtue of the assumption that a single consumer holds a neg-
ligible amount of aggregate deposits. Actual returns, however, depend on the
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aggregate behaviour of consumers which has to be consistent with individual
behaviour.

Since all consumers are ex ante identical, either all will wish to deposit with
the bank or all will decide not to do so. Consequently, equilibrium behaviour
in period 1 will be idered first ing that ¢ have deposited all
their funds m, with the bank in period 0. The following proposition shows that
itis a (Bayes—Nash) equilibrium if only consumers with a high-return project
withdraw in period 1.

PROPOSITION 7.1 (withdrawal equilibrium). Consider a feasible and
incentive-compatible deposit contract (r,,r,) and assume that consumers de-
posit all their money in period 0, D = M,. If the bank holds reserves R =
(1 + 1) - it - My, then the type-contingent strategy combination

Wi BIwi(B) ) = (mg,0), i€l
is a Bayes—Nash equilibrium.
PROOF. Given type-contingent strategies (w}(,),w}(B,) ) = (my, 0), i €1,
aggregate withdrawals will be W= w%(B,) - - I =yt - M, since 1 is the pro-

portion of consumers with type f,. By assumption, R= (1 + 1) -t + M,.
Hence, actual returns coincide with promised returns,

Pilrprs - My, (1+ 1) - - Mo,Mg) = 1+ 1y

Palrors pe Mo, (14 1) - - Mo,Mg) = 1+ 1.

It remains to show that w(-) is indeed optimal for this return structure.
Since consumers are risk-neutral, it is clear that they will either withdraw their
full deposit, 7, or not withdraw it, 0, depending on the return expected from
either action. This fact, together with the independence of the repayment
schedule from a single consumer’s behaviour, makes it possible to represent
the choice situation of a consumer by the game tree in Figure 7.4. By incentive
compatibility, B; - (1+ r,) 2 (1 + r;) 2 B, (1 + r,). Hence, one concludes im-
mediately that w(f;) = my and w¥(f,) = 0 are optimal choices for the two
types. [

Asan immediate consequence of Proposition 7.1, we see that a bank deposit
contract can implement the optimal contract (r},r3) € Q(a,). The optimal
contract is therefore an equilibrium even if the return schedule is fully
specified. The following section will, however, show that there are other, less
attractive, equilibria as well.
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7.5 Problems of Deposit Contracts: Bank Runs

Proposition 7.1 establishes that any feasible and individually rational deposit
contract can be implemented as a Bayes—Nash equilibrium. This is, however,
not the only possible equilibrium outcome in this bank model. Since actual re-
turns may fall short of the promised returns if more deposits are withdrawn
than there are reserves, the illiquidity of the bank’s assets may create a situation
where it is optimal for all depositors to withdraw. Such an equilibrium, a bank
run, is not caused by the riskiness of the bank’s assets but by the illiquidity of its
assets. The next proposition shows that it is an equilibrium if all consumers
withdraw their deposits.

PROPOSITION 7.2 (bank-run equilibrium). Consider a feasible and
incentive-compatible deposit contract (r;,r,) and assume that consumers de-
posit all their money in period 0, D = M. If the bank holds reserves R =
(1 + ry) - 4+ My, then the type-contingent strategy combination

(WiB)WiIB) ) = (mgmy), i€l
is a Bayes-Nash equilibrium.

PROOF. Given the type-contingent strategies (w'(8,),w(B,) ) = (mq,my),
iel, W= M, = D follows. Hence, actual returns will be
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Pirrs Mo(1+ 1) - pt- MpMo)=a + (1—=0) - (1+ 1)
and

Pa(ryrys Mo, (1 + 1) - it - Mp,My)=0
respectively. As in the proof of proposition 7.1, the choice situation of a
consumer can be represented in a game tree as in Figure 7.5. The minimum
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repayment in period 1, p§ = [o; + (1 - ;) - (1 + r,) - p], is always positive.
Thus, the type-contingent strategy w/(-), to withdraw in any case, is obviously
optimal. [ ]

As proposition 7.2 shows, bank runs can occur as a consequence of perfectly
rational behaviour. The logic of this result is easy to see: if every other con-
sumer withdraws in period 1, then it is best also to withdraw because the re-
turn on deposits in period 2 will be zero while there remains a positive return
from liquidation in period 1. It is not hard to check that these are the only
Bayes—Nash equilibria in pure strategies for this game.

Of course, intuition suggests that no consumer would want to deposit with
thebank in the first place if a bank run were expected for period 1. Hence, there
are exactly two subgame-perfect equilibria in this game which reflect this in-
tuition.

PROPOSITION 7.3. Consider a feasible and incentive-compatible deposit
contract (r,r,) and assume that the bank holds reserves R=(1+r) - u- D.
Then there are two subgame-perfect equilibria:
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(i) di=my wi(B)=ds wi(B)=0 foriel
(i) d;=0, wiB)=d, wiB)=d; foriel

PROOF. Claim (i): Suppose each consumer deposits d;in period 0. It follows
from proposition 7.1 that w%(B,) = d; and w*%(f,) = 0, for i €I, is a Nash
equilibrium of the subgame following these moves. Incentive-compatibility
implies (1 + r;) 2 1and (1 + r;) 2 B, (1 + r;). The expected return from de-
positing a unit of money, it - B¢ - (1 + ) + (1 - ) - (1 + ), therefore exceeds
the expected return from holding money, 1 - B, + (1 — ) - B, Hence, it is op-
timal to deposit all money, d} = my, in the first stage of the game. This proves
claim (i).

Claim (ii): Suppose each player has deposited d;in period 0. Proposition 7.2
shows that w)(B,) = d;and w(f3,) = d, for i € I,is a Nash equilibrium of the en-
suing subgame. Hence, depositing a unit of money with the bank yields an ex-
pected return of [y - B¢+ (1 — u) - B,] - p§ which is less than the expected
return from holding money since p3 < 1. Thus, d’; = 0 is optimal as claimed
in (ii). [ ]

Figure 7.6 illustrates this argument. Suppose that nature chooses the agent’s
type before, not knowing this choice, the agent decides whether to deposit her
money with the bank, m, or not to deposit it, 0. Then the consumer learns her

(14r) 0

nature

chooses «

P AuQ+r) Bupy
(14r3) 0
Be(1+7) Ben)

-offs
if all other players choose: (W (B,)ww*(B) | (w(B,).w(B,)
Fig. 7.6
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type and decides whether to withdraw her funds, 1, or not to withdraw them,
0. The pay-offs for the two second-stage equilibrium strategies are repres-
ented.

The analysis of a deposit contract which specifies the actual return pattern
for a feasible and incentive-compatible interest rate pair (r,,r,) has shown that
there is a bank-run equilibrium in period 1, given that consumers deposit their
money holdings with the bank in period 0. This bank-run equilibrium is, how-
ever, irrational in the sense that no agent would deposit in period 0 if she as-
sumed a bank-run equilibrium to follow.

Note, however, that a bank-run equilibrium in period 1 is not irrational in
its own right. What is irrational is first to deposit and then to withdraw in all
circumstances, since nothing happens between period 0 and 1 which would
justify such behaviour. The following section will show that some uncertainty
in regard to the outcome of the illiquid project together with privately ob-
served adverse information may create an environment where a bank run can
occur in period 1, even if the bank’s investment is sound.

7.6 Adverse Information, Bank Failures, and Bank Runs

The analysis in the previous section suggests that bank runs do not pose a
problem in a world with a riskless long-term investment project, even if this
asset is illiquid. For a consumer who has deposited money with the bank and
receives the low-return project, there is no reason to withdraw early other than
fear that all other low-return consumers may also withdraw. If a consumer
were concerned about such a possibility, however, it would be irrational to de-
posit in the first place.

Riskiness of the long-term project alone will not change this conclusion. Of
course, with a risky outcome for the illiquid asset, the bank may fail in certain
circ es. Since ¢ are risk-neutral, the expected return of the de-
posit will determine their deposit and withdrawal behaviour. If the expected
return from the illiquid asset is high enough to make the bank business viable,
then the previous analysis remains unchanged.

For a bank run to occur as an equilibrium phenomenon, new information
must become available in period 1. A newspaper report about the illiquid
asset, for example, may trigger a bank run, whether it is correct or not. A new
piece of information, a signal, may affect depositors’ behaviour in several ways.
The signal may become available to some or all depositors and they may react
to it simultaneously. This is the approach chosen in this section.
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Alternatively, a group of depositors may obtain the new information and re-
veal it to others by acting on it. This latter case corresponds to a contagious
bank run where depositors withdraw their deposits simply because they ob-
serve that others withdraw theirs. Modelling a bank run as induced by the ob-
served withdrawals of other consumers requires a precise description of the
sequence in which withdrawals and observations occur. Such a model would
explain how a signal is transmitted among consumers* but would not provide
further insights about the role of information in the intermediate period. To
avoid unnecessary complications, the assumption that consumers, whether
they obtain new information or not, decide on their withdrawals simultane-
ously will be maintained here.

Consider the case where there is a small chance & > 0 that the illiquid invest-
ment project may fail in period 2. The following scheme indicates the modified
return structure of the project:

long-term

ay wp. (1-8)
project ~1 o o=

0 w.p. &
t
0 1 2

As argued before, riskiness of the illiquid asset alone makes a bank failure
possible, but does not induce bank runs. Since consumers are risk-neutral,
it would suffice to replace the certain return a, with the expected return
(1-¢€) - o for the analysis of the previous section to apply unaltered.

Uncertainty about the pay-off of the illiquid asset may, however, have an
effect on the deposit and withdrawal behaviour of consumers if one assumes
in addition that, at the beginning of period 1, consumers receive new informa-
tion, a signal @, about the success of the long-term investment. This signal &
may take either of the following two values: o indicating that the return of the
illiquid asset is &y, and o} warning of an impending failure of the illiquid pro-
ject. The signal o is informative since it is correlated with the failure of the il-
liquid asset. We consider three states of the world characterized by different
combinations of the return rate of the illiquid asset and the signal o that con-
sumers observe. Table 7.1 summarizes these three states and their probabil-
ities. The probabilities in the right-hand column are ex ante probabilities for
the three states. A state is characterized by a particular return of the illiquid
asset and a particular state of information of the consumers.

4 There s a small,but growing,li ission through ion of the
behaviour of other agents. This literature on h(rdmgbchn\'mur appears to provide a way of model-
ling bank runs as induced by the obscrved withdrawals of other consumers. Compare, e.g., Banerjee
(1992) and Bikhchandani, Hirshleifer, and Welch (1992).
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State Return of the Information Probability
illiquid asset of state

5 ay oy 1-g-6

$ oy o 8

s3 0 oL €

Table 7.1

The signal is informative: oy, indicates that there is no risk for the return of
the illiquid asset, while o; allows the consumers to reassess the likelihood of a
failure. Note, however, that a signal is not necessarily ‘correct’: § is the prob-
ability that consumers receive a warning signal o} and that theilliquid asset has
areturn ay,. Clearly, in this state, the signal is misleading. If the signal were
completely unrelated to the outcome of the illiquid asset, then the signal would
become a pure ‘sunspot’. This corresponds to the special case £ = 0.

In period 0, when consumers make their decision about depositing with the
bank, states are unknown. At the beginning of period 1, depositors learn the
returns of their private investment opportunities 8 and which signal o has oc-
curred. In the light of this information each depositor will update beliefs about
the success or failure of the lliquid project. Table 7.2 lists the updated beliefs of
a depositor.

Information Updated belief that state is
in period 1
5 52 53
on 1 0 0
o 0 8/(6+¢€)  e/(b+¢€)
Table 7.2

Withdrawal strategies of consumers in period 1 will be conditioned on the
signal o which a consumer holds and on the type of her private project 6,

(W B,01),W( Bes01), W By, 011, w(B,07) ).

A strategy of a consumer now specifies

* how much to deposit in period 0, 4, and
e atype-contingent withdrawal plan

(WB101),W(Be,0,) W( B O)w(B,01) ) for period 1.
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Given such a withdrawal plan, aggregate withdrawals W() can now be written
as a function of the state, because observations of the warning signal o vary
with states:

W(s) = [1- w(Be0) + (1-p) - w(B,0)] - I, fori=1,2,3.

Risk-neutrality implies that consumers will either deposit all their money,
mg, or nothing at all. Similarly, in period 1, they will withdraw all their deposits
or leave them all with the bank. Consumers with a high-return private project
will withdraw their deposits no matter what signal they receive. Consumers
with a low-return signal, on the other hand, will make their withdrawal deci-
sion dependent on their reassessed beliefs about the success of the illiquid
asset, because a failure of this investment will lead to a bank failure.

Observing the good signal, 0}, a consumer with a low-return project knows
that the bank will pay the promised interest. Incentive-compatibility of the re-
turns on deposits, (1 + r,) > B, (1 + r,), then guarantees that it is optimal not
to withdraw the deposit.

From a bad signal o}, consumers can conclude that the bank will fail with
probability &/(8 + €). If this updated probability of a bank failure is small
enough, then only high-return consumers will withdraw even if the bad signal
is observed. But if the information of a bad signal induces a strong belief that a
bank failure is imminent, then it is optimal for all consumers to withdraw
early. In particular, for

(L+r) - [1-(e/(8+eN]<B,- (1 +1),

there is a unique equilibrium where all consumers withdraw their deposits.
The following type- and state-contingent behaviour forms an equilibrium in
period 1:

(W(Bes01) W Ber 01 WP, O1)W( By, 01) ) = (1, 10,0,m10).

If all consumers have deposited their funds with the bank, D = My, and follow
this withdrawal strategy, then aggregate withdrawals will be

W(s) = -my+(1=p)-0]-I=p- M,
W(s)) = (- mg+ (1 =) - mp] - I=M,, and
W(s3) = (- mg+ (1=p) - mg) - I= M,.

Suppose the bank offers a contract (r,,r,) € Q(a,,1) and holds sufficient re-
serves for the case of normal business, R = (1 + r;) - 4 - My. Given aggregate
withdrawals W(s;), one easily computes the following state-contingent actual
returns:
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pCls)=0+n) and py(-15)=(1+r),
1) =p8 and py(-1s,) =0,
piC1s)=p} and py(-1s;) =0,
withpd=a+(1-a) - (1+n)-u<(l+n).

An individual consumer’s behaviour has no impact on aggregate variables
and, therefore, on returns. Hence, one can check the optimality of a con-
sumer’s strategy in regard to the other consumers’ behaviour in a decision tree.
In state s, no bank failure is possible. This explains why there is a single node
for the decision in period 1 in this case. In the other states, s, and s;, consumers
obtain the same signal ;. Thus, they do not know whether a bank failure oc-
curs or not. In Figure 7.7, the decision to deposit (not to deposit) is denoted by
my (0) and the decision to withdraw (not to withdraw) in period 1 by 11, (0) re-

spectively.
by Ayo(1+n)
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Fig. 7.7

It is easy to check that the assumed withdrawal behaviour in period 1

(W(Ber01) (B 01)s W01 WPy 01) ) = (migy 11,0, mg)

is indeed optimal. In state s, the bank fails and consumers, regardless of their
private project, are justified in withdrawing their funds early. In state s;,
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however, all consumers withdraw because the bad information about the
illiquid asset makes even consumers with a low-return project find it too risky
to stay with the bank. Though the illiquid asset has a good pay-off in this case,
the bank will break down due to false information about a pending bank fail-
ure. Note that this bank run is caused by an information problem, not by any
actual problem of the bank.

It remains to check whether depositing may be an optimal strategy in period
0 given such withdrawal behaviour. One computes the expected returns from
depositing and following this withdrawal strategy as

(1-e=8)-[1-Be-U+r)+(1-p)-(1+n)
+(e+8) - [u-Be+(1-p)-B) -}

and the return from holding money as [ - f; + (1 - ) - B]. Since

- Be- 1)+ (1= -A+n)]>[p- B+ (1-p)- Bl
>u- e+ (1-p)- Bl P

depositing is optimal provided that (& + 8), the probability of receiving a bad
signal oy, is sufficiently small.

Though there are other equilibria in this game, these arguments demon-
strate that informational problems can lead to bank runs. In contrast to the
case of a certain return, however, it can be subgame-perfect to deposit with the
bank if the risk of a bad signal is sufficiently low.

In Chapter 8, we will take up the question whether regulation of a bank may
help to avoid problems arising in a bank model based on liquidity considera-
tions.

Notes on the Literature

Since formal modelling of banks began, a substantial literature has emerged
that concerns itself with the nature of the banking business. One cannot do
justice to the many issues raised and the many contributions made in a single
chapter of a book. Moreover, this literature has been surveyed several times
over the past 20 years. The surveys by Baltensperger (1980) and Santomero
(1984) organize the literature according to the different aspects of the banking
business, and Hellwig (1991) provides a highly stimulating account of the
most recent research from the perspective of the banking system’s role in
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corporate finance. We content ourselves with a brief discussion of the three
types of model that have emerged from this literature.

The oldest type of model views a bank as an enterprise that transforms in-
divisible and risky assets issued by firms into assets of small denomination
with little or no risk. In this way, banks intermediate between small investors
who seek low-risk investment opportunities and profitable but risky business
investment. Banks manage their asset and liability structure for exogenously
given risk and return characteristics of the assets and for exogenously given
random withdrawals of deposits. The correct evaluation of the bank’s asset
risk and the correct pricing of liabilities becomes a major concern in this con-
text. Baltensperger (1980) and S: 0 (1984) offer examples for this type
of model.

A second, more recent, strand of literature models investors and firms ex-
plicitly. Although direct investment in firms is feasible, banks can provide ser-
vices for both parties. Diamond (1984) shows that banks may be more efficient
in monitoring firms and therefore able to provide a portfolio of assets in firms
at lower cost than an individual investor. By choosing a sufficiently diversified
portfolio of assets the bank can provide deposits for investors with reduced or,
by the law of large numbers, no risk at all. This model provides an endogenous
justification for a bank. Diamond’s (1984) model of investors and firms re-
sembles the model of monitoring costs in Section 6.2, which was used to jus-
tify the standard debt contract.

The third type of banking model focuses on the special characteristic of a
bank deposit contract to be due on call. Diamond and Dybvig (1983) sparked
off a sequence of papers dealing with bank models based on illiquid assets and
random needs for liquidity. Most of these models assume risk-averse con-
sumers and view deposit contracts as insurance instruments. Jacklin (1987)
shows that a mutual fund type of bank can implement the optimal contract in
a Diamond and Dybvig environment. Jacklin and Bhattacharya (1988) show
that this is no longer true if the illiquid asset has risky returns. Some of the
literature investigates the role of a different rationing scheme called sequential
service constraint (Diamond and Dybvig 1984 and Anderlini 1990). Chari and
Jagannathan (198g) were the first to suggest that a bank run may be triggered
by adverse information about the returns of the long-term project. The fact
that ‘sunspots’ can induce a bank run was observed by Diamond and Dybvig
(1983), and is explicitly modelled in Anderlini (1990). The model presented in
this chapter is based on Eichberger and Milne (1991) and Eichberger (1992).
Bhattacharya and Thakor (1993) and Dowd (1992) provide recent surveys of

this literature.
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Exercises

1. Consider a consumer who has preferences over wealth in period 1 and period 2,
W, and W, respectively, which are represented by the following von
Neumann—Morgenstern utility function: B,- W, + W,. The discount parameter
B, is uncertain but known to take the values B, with probability p and B, with
probability (1 — ), B; > B,

In period 0, this consumer has to invest her initial wealth W, She can

o cither hold ‘money’ which stores wealth from period to period without gain

or loss,

® orinvest it in an asset that returns per unit invested either &, in period 1 and

0 in period 2, or 0 in period 1 and o in period 2, 0 > @4.

(a) Draw a diagram with the indifference curves for the two types of con-
sumers.

(b) Suppose that the consumer holds half of her initial wealth as money and
invests the other half. Show in a diagram the feasible W, — W, combinations of
the consumer. At what rate can she transform wealth of period 2 into wealth of
period 12

(c) Analyse in a diagram how the set of feasible wealth combinations
changes as the consumer varies her investment in period 0.

(d) Solve the optimal choice problem for both types of the consumer given
a decision about the initial investment level.

2. Suppose that a bank has deposits D which it can hold as reserves R or invest in
an asset that returns per unit either $0.80 in period 1 and $0 in period 2, or $0 in
period 1 and $1.60 in period 2.

(a) For a given amount of reserves R and the remainder of its deposits in-
vested, show in a diagram how the bank’s wealth in period 2 varies as with-
drawals W change from zero to D.

(b) Prove that it is optimal to hold reserves exactly equalto the pay-out that
is necessary for withdrawals in period 1.

(c) Suppose that the bank holds half of its deposits as reserves and promises
to pay 20 per cent interest on deposits withdrawn in period 1. Show that the
bank’s wealth in period 2 falls to zero if withdrawals exceed 75 per cent of de-
posits.

3. Reconsider the model of Section 7.6 where the investment project may fail and
consumers get a signal which is correlated with success or failure of the project.
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s o

(a) How many types of ¢ have to be disti; d in period 1 in
this case? Write down the type-contingent contract for the representative con-
sumer.

(b) How many states of the world must be distinguished in this scenario?
For each state of the world, write down the feasibility constraints if all con-
sumers use the same type-contingent contract.

4. A Bayes—Nash equilibrium is defined as a type-contingent strategy for each
Pplayer such that the strategy assigned to each type of player maximizes the ex-
pected utility of this type
o given the behaviour described by the type-contingent strategy combination,
and
o given the information revealed by the player’s type.

(a) Show that the bank-run equilibrium described in Section 7.5 is a
Bayes—Nash equilibrium. What is the information revealed by a player’s type?

(b) Show that the optimal contract described in Section 7.3 is a Bayes—Nash
equilibrium.

5. Reconsider the model of Section 7.2. Suppose that, in period 0, consumers form
a mutual fund which invests (1 — ) - My and holds 1 - M, as liquid reserves. In
period 1, the fund pays each consumer p1 - my and in period 2 &, - (1 — 1) = mq.
After they learn their type in period 1, consumers are allowed to trade their shares
in the fund.

(a) Determine supply and demand for shares of the fund in period 1.

(b) What is the equilibrium price of a share?

(c) Show that this mutual fund with retrading of shares also implements the
optimal contract derived in Section 7.3.
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Chapter 7 suggested that transformation of liquidity is a bank’s main role in a mod-
ern economy. Taking deposits on call and investing them, at least partially, in long-
term illiquid assets entails the risk of bank runs. Because of the intrinsic risk these
institutions face, regulation has been part of the institutional framework from the
earliest days of banking. In this chapter, we study the effectiveness of different regu-
latory measures and the capacity of these instruments to achieve their objectives.

8.1 Bank Regulation: The Rationale

We have argued in Chapter 7 that rational consumers would not deposit their
funds with a bank if they expected a bank run to occur in period 1. However,
once the decision to deposit has been made, these funds are committed and a
bank-run equilibrium is as much a possibility as an equilibrium implementing
the optimal contract. Indeed, existence of these two equilibria is a prerequisite
for adverse information triggering a bank run.

In most countries, banks have been considered to be firms with special risks
and broader obligations than other businesses. A major concern has always
been the possibility of a banking panic which may be triggered by a failure of
or a run on a single bank. Such a panic, leading to the collapse of a number of
banks and associated firms, may arise because some of a bank’s long-term in-
vestment will often be with other banks which may be forced to liquidate funds
in turn. Selling assets of many fi ial institutions simul ly may se-
verely reduce the liquidation value of the assets, thus re-enforcing the need to
liquidate. Such banking panics have been observed historically and have pro-
vided a reason for extensive regulation of banking business.

Regulation of banks has taken many forms. Some of the practices found are
easy to understand in the context of our model. For example, banks were often
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constrained by regulation to purchase only ‘safe’ assets, like mortgages, exclud-
ing banks from trade in equity and other security markets altogether. Such
measures were aimed at making the pay-off of a bank’s assets as predictable as
possible, for, as the bank model in the previous chapter shows, certainty may
prevent bank failures. However, certain returns of a bank’s long-term assets do
notshelter it from bank runs. A disadvantage of such regulation is that it makes
abank’s assets more predictable but not necessarily more stable. By preventing
diversification of a bank’s assets, the long-run risk of a bank’s portfolio may
even be higher.

Bank failures cause disruptions of the payment system and may have large
repercussions on all sectors of an economy, because other firms and banks may
break down as a consequence. Prudential control of the banking system with
the objective of preventing further bank failures has a certain appeal there-
fore. Our model shows that bad news may trigger a bank run, even if it is ob-
jectively false. Thus, observing the breakdown of a bank may induce depositors
of another bank to withdraw their funds, even if the two banks are not even
linked.

The model presented in the previous chapter is suitable for analysing and
assessing different forms of regulation designed to prevent bank runs. Among
the many possible ways of regulating banks, the following four types of inter-
vention are most commonly proposed:

e reserve requirements,

o suspension of convertibility,

o deposit insurance, and

e capital adequacy requirements.

These methods will be analysed in the context of the bank model with a certain
return of the illiquid asset, and also for the case of uncertainty about the il-
liquid asset’s return with new information arriving in period 1. The analysis
will focus on the suitability of these regulatory measures for the stated
objective, to avoid bank crises, and the costs involved for the banks. Further
issues concerning regulation of banks will be discussed at the end of this
chapter.

Most of the arguments about the impact of prudential regulation on with-
drawal behaviour can be conducted in Figure 8.1 which shows the repayment
schedule of period 2 as a function of aggregate withdrawals, p,(W), and the
return of consumers with a low-return investment opportunity if they with-
draw their funds in period 1, 8, - p;(W). A consumer who leaves funds with the
bank will achieve a return of p,(W) while a consumer with a low-return
project obtains a return of 3, p,(W) from withdrawing in period 1. It is op-
timal for a consumer with a low-return project
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o to withdraw the deposit if B, - p;(W) 2 p,(W),and
o to leave the deposit in the bank if B, - p,(W) < p,(W).

Thus, there is a critical level of aggregate withdrawals, %, such that con-
sumers with a low-return project will withdraw their funds, if and only if the
aggregate withdrawals exceed 7. Notice that 27 is always larger than reserves,
2> R, which equal the aggregate withdrawals of the consumers with a high-
return investment opportunity, who will withdraw their deposits in any case.
Hence, there are two equilibria! associated with two aggregate withdrawal
levels,

e an equilibrium at W* = R, where only consumers with the high-return
project withdraw, and

© an equilibrium at W' = D, where all consumers withdraw their deposits
prematurely.

From Figure 8.1, it is immediately obvious that the bank-run equilibrium,
W = D, will exist as long as the return schedules satisfy the inequality

pa(D) < B+ py(D)-

Regulation which is effective in preventing a bank-run equilibrium must
change the pay-off schedules such that this case is impossible. This will be the
leading question in the following sections where we discuss the particular
forms of prudential regulation.

! Indeed, there is a third equilibrium at W= % wh with the | roject are
indifferent between withdrawing and leaving the deposit with the bank if the right proportion of in-
different consumers withdraws. This equilibrium will not be further analysed here.
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8.2 Reserve Requirements

One of the earliest instruments of prudential control which is often applied in
practice is reserve requirements. Reserve requirements usually specify that a
minimum fraction of a bank’s deposits, or equivalently of its assets, be held as
reserves in the form of a liquid asset. Since deposits have to be paid back on de-
mand rather than at a predetermined date, a bank must have sufficient liquid
funds to meet the demand for withdrawals by depositors at any time. An op-
timal bank policy requires holdings of reserves that are sufficient to meet the
expected withdrawals in period 1. Hence, banks will voluntarily provide for re-
serves in order to avoid unnecessary liquidation costs arising from premature
liquidation of long-term assets.

The amount of reserves which banks hold voluntarily will be insufficient,

h , if more c than expected withdraw their deposits. In par-
ticular, they are inadequate for a bank run where all depositors reclaim their
money. Mandatory reserve requii are supposed to guarantee adequate

reserves for withdrawals. Considering the following three cases makes it ab-
solutely clear that there is a fundamental problem with reserve requirements as
an instrument of prudential control.

(1) If the bank is required to hold reserves which are adequate for just with-
drawals in the non-bank-run equilibrium, then the bank will voluntarily com-
ply with these requirements. No protection from bank runs is provided by this
level of reserves, as the analysis in the previous chapter shows.

(2) If required reserve holdings exceed the amount of reserves voluntarily
held by a bank but fall short of a 100 per cent reserve ratio, then no extra pro-
tection against bank runs is achieved. Actual returns on deposits in period 2
will still fall to zero if all consumers withdraw,

px(D) =0< B, py(D),

making it optimal for all consumers to withdraw early. Such extended reserve
requirements impose costs on the bank because reserves in excess of those
needed for the non-run case could have been invested in the illiquid asset
yielding a higher return. These costs reduce the interest payment that the bank
can make to consumers and/or the bank’s profit. Thus, there are costs from
such a policy without offsetting benefits in terms of greater security of the bank.

(3) Finally, if the regulator imposes a 100 per cent reserve requirement, then
full protection against bank runs is achieved. The bank can, however, no longer
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invest any deposits in the illiquid asset, thus forgoing any returns from holding
deposits. Hence, the bank cannot pay a return on deposits. This destroys the
possibility of achieving a superior return by depositing with the bank. In this
case, protection from bank runs is provided at the cost of all potential benefits
from depositing.

Figure 8.2 shows that, with a 100 per cent reserve ratio, the bank simply
stores the deposits and cannot pay any return on deposits. It is therefore op-
timal for all consumers, irrespective of their investment opportunity, to with-
draw the funds that they have deposited with the bank. In fact, depositing is
like holding money.

PPy
B, Be-py(W)
! (W) =p,(W)
0 D w

Fig. 8.2

This analysis will not change at all if the return of the illiquid asset un-
certain and if information on the quality of the bank’s investment becomes
publicly known in period 1. In conclusion, reserve requirements are a particu-
larly inefficient way to achieve protection against bank runs.

8.3 Suspension of Convertibility

An alternative way of securing the bank against bank runs is an early closure of
the bank. If the pay-out in period 1 is stopped before the return on deposits in
period 2, p,(-), falls below B, - p,(-), then there remains no incentive for the
consumers with a low-return project to withdraw early. Figure 8.3 shows the

229



Asymmetric Information: Contracts

PPy

(1+1,)
() P2l
Be(+n)
Bony
0 W o D w

Fig. 8.3

modifications of the return schedules implied by such a policy as the schedules
marked =. The figure illustrates the effectiveness of this policy if the sus-
pension of payments occurs early enough, i.e. before W exceeds 7. More
importantly, this policy has no cost for the bank or the consumers if the regu-
lator can credibly commit to suspend convertibility before the critical with-
drawal level is reached. Such a commitment will make it irrational for
consumers with a low-return project to withdraw early. It is immediately obvi-
ous from Figure 8.3 that the non-bank-run equilibrium is unique under this
regulation.

This argument is valid as long as we assume that the illiquid asset has a cer-
tain return in period 2. If one assumes instead that, with small probability, the
illiquid asset may fail in period 2, then suspending convertibility cannot pre-
vent returns in period 2 from falling to zero if this event occurs. If the likeli-
hood of this event is small enough, then consumers with the low-return
project may not withdraw their funds in period 1. However, in this case, con-
sumers will actually lose their deposits if the bank’s illiquid asset fails.
Protection from a bank run may come at the cost of ‘efficient’ liquidation
should the project actually fail.

Moreover, if consumers receive a signal concerning the likelihood of a bank
failure, then this signal may trigger the bank-run equilibrium even if the
authorities tried to stop the pay-out from the bank. Consumers who are con-
cerned about their investment may then run to recover as much as possible be-
fore the bank is closed. A credible commitment to close banks in the case of
excessive withdrawals may even increase the likelihood of a run, since con-
sumers face the prospect of losing even the liquidation return pf.
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8.4 Deposit Insurance

Compared to reserve requirements and suspension of convertibility, deposit
insurance has been a regulatory institution of more recent times. The first
comprehensive system was introduced in the USA following the series of bank
collapses in the early 1930s. Since then a number of other countries have
adopted similar schemes to protect depositors against bank runs.

Deposit insurance usually works as follows. A regulatory agency collects
mandatory contributions from financial institutions covered by the scheme to
accumulate funds which will be used to pay back deposit claims in case of a
bank run or failure. Different countries vary this basic arrangement by

® guar ing only part of a depositor’s funds,

e restricting payments to a maximum amount,

o making contribution schemes dependent on some risk measure, or
o requiring contributions in proportion to some balance sheet item.

In the context of the bank model of the previous chapter, it becomes obvi-
ous that deposit insurance does not affect consumers’ withdrawal behaviour
if it only guarantees a fraction or all of the promised repayment in period 1,
(1 + r,). Consumers with a low-return project , will withdraw their deposits
whenever

B - pi() > ps()-
If all consumers withdraw their deposits, the second-period return will be
zero, p,(-,D) = 0. Hence, consumers will find it optimal to withdraw if every-
one else withdraws irrespective of how much the deposit insurance agency
guarantees to repay in period 1.

To prevent consumers from withdrawing early, repayments in period 2
must exceed the return which consumers achieve from their private project if
they withdraw their deposits in period 1. Since a low-return consumer could
recover p§ in period 1, even if all other consumers withdraw, a guaranteed re-
turn in period 2 of B, - p} would break the incentive to withdraw in period 1.
This argument shows that a guaranteed repayment in period 1, §;, which is not
accompanied by a repayment in period 2, §,, of at least 8, - f,, cannot prevent
bank runs.

Figure 8.4 shows a deposit insurance scheme where depositors are guaran-
teed a minimum repayment of (1 + r,) in period 1 and a minimum repayment
of B, - (1 + ;) in period 2. Though depositors with a low-return project would
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be indifferent between withdrawing and leaving their deposits in the bank for
W > 2, the non-bank-run equilibrium will dominate all other equilibria.
There are many different deposit insurance schemes distinguished by the re-
payment schedules that they guarantee depositors. It is possible to give precise
conditions for a deposit insurance scheme to render a bank run impossible.

The following proposition holds for the case of a certain return on the illi-
quid asset @, if the bank offers a deposit contract (r;,r,) € Q(e5,1) and holds
reserves R= (1 + 1) - - M,.

ProposITION 8.1. If a deposit insurance agency guarantees a repayment
P2 > B, Py, then a bank run is not a Bayes—Nash equilibrium in period 1.

PROOF. A bank run is a situation where all consumers irrespective of their
project withdraw their deposit, (w(f3,),w(f,) ) = (mg,m;). Consider a con-
sumer with a low-return project. If this consumer withdraws in period 1, she
will earn a return rate of 3, p,. By not withdrawing in period 1, a consumer
obtains §, > f, - p; from the deposit insurance. Hence, withdrawing in period
1 cannot be optimal for a consumer with a low-return project. L]

With a deposit insurance system satisfying this condition, bank-run equi-
libria are no longer compatible with optimizing behaviour of consumers be-
cause the repayment schedule in period 2 has been changed by guaranteeing
repayment f,. Notice that the guarantee of the deposit insurer will never have
to be exercised, since no bank run will occur in equilibrium. Thus, deposit in-
surance appears to be an attractive way to prevent bank runs arising from a co-

dinati blem among

) 2
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This conclusion depends, however, on the assumed risklessness of the il-
liquid asset. To see this, reconsider the model with an illiquid asset that has a
risky return ;. Repeating the argument in the proof of Proposition 8.1 shows
that a deposit insurance scheme that pays §, > f; - p§ in period 2 will make
early withdrawals by low-return consumers suboptimal. Hence, no bank run
equilibrium exists in this case either. In state s, however, a bank failure occurs
because the illiquid asset has a return of zero. In this case, the deposit insurer
actually has to cover the loss, and deposit insurance is no longer a free good.

If bank failures are a possibility, then the deposit insurance agency will have
to pay for losses by the bank. This may be very costly and lead the deposit in-
surance agency itself into bankruptcy if government agencies do not inject fur-
ther funds. The problem arises because it is impossible for a regulator to
predict whether unexpected early withdrawals by depositors are a pure co-
ordination problem causing short-term liquidity problems for the bank, or a
rational reaction to a pending failure of the bank’s investment. The difficulty
faced by a regulator in distinguishing bank runs caused by sudden liquidity
problems from bank failures caused by bad investment decisions has been a
major problem afflicting the deposit insurance scheme in the USA over the last
decade.

8.5 Capital-Adequacy Requirements

Up to this point, a bank has been treated as a business institution without
owners. Indeed, if the deposit contract were optimal, i.e. the contracted re-
turns on deposits were (r},r3), then the bank would not make any profit.

There are, however, incentive-compatible deposit contracts (r,r,) €
Q (@,4) which create a surplus for the bank. Profitable ownership of a bank is
therefore possible in the environment modelled in the previous chapter.

If owners participate in the investment of a bank and if they offer repay-
ments on deposits that generate some profit, then the owners’ profits provide
a cushion against unexpected withdrawals in period 1 and the associated de-
cline in actual returns on deposits in period 2. Capital participation by the
bank’s owners reduces the risk of a bank-run equilibrium. The owners’ capital
and profits work like a collateral for the contracted return schedules of the de-
posit contract. Indeed, with sufficient capital and a certain return on the il-
liquid investment, owners can guarantee the contracted returns.

Capital-adequacy requi impose a minimal capital participation by
owners, usually expressed as a fraction of certain assets of the bank. Denoting
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the amount of capital contributed by the owners of a bank by E and the
amount invested in the illiquid asset by K, one can write the balance sheet
equation of the bank in this model as

K+R=D+E

With equity participation E the amount of funds invested in the illiquid asset
wouldbe K= D + E - R. This raises the question of how much equity is neces-
sary to guarantee those depositors who do not withdraw in period 1 the con-
tracted return (1 + r,). Clearly, if the funds deposited by those consumers who
stay with the bank until period 2 remain invested in the illiquid asset, then
they will reap a return o, which is high enough to pay the contracted amount
(1+n).

In a bank without own-capital participation by its owners, the bank has to
liquidate funds invested in the illiquid asset if withdrawals in period 1 exceed
reserves, (1 + r;) - W> R. Since liquidation of a unit of money invested in the
illiquid asset raises only ; units of money in period 1 while the bank has to
pay out (1 + r,) per unit of withdrawal, it has to cover a deficit of (1 + r, — &t;)
per unit of withdrawal by additional liquidation of funds. If the bank held no
reserves, R = 0, then a bank deficit of (1 + r, — &;) - W would have to be
covered by liquidation in period 1. Since withdrawals cannot be greater than
total deposits, D > W, the maximal possible deficitis (1 + r, — o) - D.

Holding reserves saves (1 — &) - R and liquidating equity invested in the
illiquid asset raises @, - E. It is therefore unnecessary to liquidate deposits in-
vested in the illiquid asset if

o E+(1-q)-R2(1+n-0oy)-D
holds. Using the balance sheet equation to substitute for R, one can express this
condition equivalently as
E2(1-0y)-K+r-D.
In this form, it becomes clear that equity must suffice to cover any shortfall on

investments in the illiquid asset plus the promised interest payments for
period 1.

For the case of an illiquid asset with riskless return oy, the following pro-
position shows that this condition is in fact sufficient to guarantee a return of
(1 + ) in period 2 independent of withdrawals in period 1.

PROPOSITION 8.2. For any amount of deposits D and reserves R, suppose
that the owners of the bank invest equity in the illiquid asset such that

E2[(1+n-a)-D-(1-a)- Rl/a.
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Then the actual return on a unit of deposit in period 2 satisfies
W) =(1+r)

for all levels of aggregate withdrawals W< D.

PROOF. From the definition of the actual return function p,(-) in Chapter
7, it follows that p,(W) = (1 + r;) holds if and only if

V(r;W,R.D) 2(1+ r,) - (D-W).
Recalling the definition of V(r,;;W,R,D) given in Chapter 7, modified such that
the investment in the illiquid asset is E + D — R rather than D - R, it is easy to
see that, for (1 +r,) - W> R,
V(r;;W,R,D) = max{0, &, - (E+ D= R) = (a/0y) - [(1 + ;) - W= R]}
holds. Hence, V(r;;W,R,D) 2 (1 + ) - (D— W) if and only if
o, (E+ D-R)—(afey) - [(1+ 1) - W=R] 2(1 +1,) - (D-W).
This inequality can be transformed into the following equivalent inequality
(o) - [0y - E+ (1—ay)-R+ - [1-(1 + n)/a,] - D
—l+n)—o - (1+n)ley] - W) 20.

Note that (1 +r) 2120 (1 + r)/o, holds since 12 (1 + )/, by
feasibility (r;,r,) € Q(05,). Because W < D, the last inequality is necessarily
satisfied if

(o)) - [0 - E+(1-0y) R+ - [1-(1+1)ay] - D

= +n)-0-(1+n)a)]- D]
=(op/ey)-[oy-E+(1-0y)-R-(1+r—-a)-D]20

holds. This is, however, guaranteed by the condition of the proposition. [ ]

Proposition 8.2 demonstrates that sufficient equity can guarantee depos-
itors the contracted return (1 + r,) no matter how many depositors withdraw
their funds in period 1. It is therefore never optimal for a depositor with a low-
return project to withdraw his deposit in period 1 since (1 + ;) 2 §,- (1+ )
for all levels of aggregate withdrawals W. Hence, there cannot be a bank-run
equilibrium if the owners of the bank provide sufficient capital. Figure 8.5
illustrates the return functions of deposits for this case.

Though it has been shown that the owners of a bank can guarantee the
second-period return on deposits and, by doing so, protect the bank from

bank runs, it is not clear whether the owners of the bank would want to invest
the necessary capital in the bank business. It may well be that a requirement to

235



Asymmetric Information: Contracts

PPy

(1+1y) Py(W)

Boo(1+n) B, (W)

Fig. 8.5

invest sufficient funds in the banking business will make banking non-
profitable. Whether the banking operation is undertaken or not depends on
the return that the owners’ investment in the bank will generate and on the
opportunity cost of such an investment.

To gain some insight into the incentives of the bank owners and the scope
for profitable banking in this model, consider the case of a monopolistic bank
with an inelastic supply of deposits for r, > 0.If the bank is a monopolist, it can
offer the lowest incentive-compatible interest rate in period 2, r, = - (1 + r,)
- 1. The profit-maximizing pair of interest rates subject to the supply of
deposits is therefore the pair (r,,r,) = (0,5, — 1). Given this interest rate pair
all consumers will initially deposit with the bank and consumers with a
high-return project will withdraw in period 1 while all other consumers stay
with the bank up to period 2 if the actual return rate in period 2 is at least
B-1.

Suppose that the bank satisfies the capital-adequacy constraint for this in-
terest pair,

E2[(1-a)/ay) - (D-R) = [(1-a)oy] - (1=p) - M.

Note that the profit-maximizing choice of interest rate in period 1 is zero,
r; = 0, and the optimal level of reserves is equal to the amount withdrawn by
the consumers with a high-return project, R = W = 11 -. M, Given sufficient
equity, there is a unique withdrawal equilibrium where only high-return con-
sumers withdraw their deposits in period 1, as Figure 8.5 shows.
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The profit from the banking business for the owners is therefore

M(E) =0, (E+ D=R) - B,-(D-R) =0y E+ (a— ) - (1 - ) - Mo.
There is a constant profit rate from the business with those depositors that do
not withdraw in period 1, (&, = ) - (1 = 1) - M. The marginal profit for any
unit of own-capital invested is 0, the return rate of the illiquid asset in which
the bank invests its equity. Whether the bank is willing to invest voluntarily in
the riskless illiquid asset depends on the opportunity costs of the bank’s
owners. If alternative investment opportunities have a return rate which is less
than or equal to &, then a capital-adequacy requirement which guarantees the
non-bank-run equilibrium will be without cost to the bank’s owners.

If, however, the opportunity costs of the bank’s owners per unit of funds
invested in the bank business, say 7, exceeds the return on the illiquid asset,
7> @, then investors may not be willing to provide sufficient equity to guar-
antee the return schedule for depositors. More precisely, the profitability
condition T(E) 2 7- E imposes an upper bound on profitable equity partici-
pation by the bank’s owners,

1B (. My E

(F-0)
Note that this upper bound depends on the minimum interest that has to be
paid on deposits, 3, because that limits the profit margin on deposits that are
not withdrawn, and on the amount of deposits that will not be withdrawn
under normal business conditions. This upper bound may well be in conflict
with the lower bound on equity participation required to secure the return
schedule on deposits. These considerations point to the crucial importance of
the bank owners’ opportunity costs of funds for their willingness to comply
with capital-adequacy requirements.

As in the case of deposit insurance discussed before, the potentially costless
protection from bank runs through a guarantee of the repayment schedule on
deposits, this time, however, by the bank owners rather than by a public
agency, depends again on the assumption that the illiquid asset be riskless. If
there is a chance that the illiquid asset may fail, then it is impossible to protect
return rates by investing sufficiently in the illiquid asset.

This is easy to see by considering the actual return rate function p,(W) for
the case where @, = 0 holds. No level of equity will stabilize the actual return in
this case. Information about a pending bank failure can therefore induce early
withdrawals which indeed may be justified, as in state s;, or may not be
justified, as in state s,. Thus, one has to conclude that capital-adequacy re-
quirements cannot prevent bank run equilibria if there remains a risk of a
bank failure.
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8.6 Summary

The discussion of different regulatory measures for prudential control in this
section has led to the following conclusions:

® Reserve requirements provide protection against bank runs only in the
case of a 100 per cent reserve requirement which eliminates the efficiency-
enhancing deposit business of a bank.

Suspension of convertibility achieves protection from bank-run equili-
bria for the case of an illiquid asset with a riskless return. Otherwise it pre-
vents efficient liquidation of a failing investment.

Deposit insurance can provide effective protection from bank runs
whether the illiquid asset is risky or riskless. This is possible because out-
side funds are injected in the case of a bank failure. The costs of such a
protective measure depend therefore on the distortion created by raising
the necessary funds for the deposit insurance scheme.

Capital-adequacy requirements can provide protection from bank runs if
the illiquid asset is riskless; otherwise there is no possibility of preventing
bank runs through capital-adequacy requirements. The costs of this
regulation for the bank owners depend crucially on the opportunity costs
of their funds.

Up to this point, the analysis has neglected the question of how incentives
for depositors to monitor the bank’s assets are affected by regulatory protec-
tion. Moral hazard of this kind is often considered to be a major problem for a
smoothly working deposit market. The standard argument for this view sup-
poses that, without regulation, the market for deposits would operate just like
any other market for financial assets: equilibrium interest rates for deposits
reflect the risks of the respective bank’s asset portfolio and deposits are claims
against a bank’s portfolio which can be priced as described in the first part of
this book. Any kind of regulation will interfere with this process and lead to
distorted asset prices and allocations.

This view rests on the presumption that there is no asymmetric information
and that the pay-off stream of a bank’s assets is not affected by consumers
decisions to withdraw or to deposit, i.e. to buy or sell claims to these assets.
From this perspective, there is no difference between deposits and other secur-
ities. In the model proposed in the previous chapter, however, deposits are a
special contract form which solves an investment problem due to asymmetric
information about depositors’ characteristics. The decision by depositors to
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withdraw their funds does not leave the returns on deposits unaffected. The
actual returns on deposits with a bank are endogenously determined and de-
pend on the equilibrium that will obtain. It is therefore inadequate to apply the
equilibrium-pricing methods of the first part of this book to these deposit
contracts. Therefore, the standard argument for a moral hazard problem due
to regulation is not applicable.

Of course, this argument does not rule out incentive problems due to
prudential control. It asks, however, for an argument in the framework of
asymmetric information which was used to establish this contract form as
potentially optimal.

Notes on the Literature

There is a large literature on bank regulation. In particular, during the last
decade much of this literature has been concerned with the moral hazard
problem implicit in all forms of outside guarantees. This part of the literature
was stimulated by the experiences in the USA in the mid-1980s which are
analysed in Kane (1985).

Formal analysis of different prudential control concepts is limited because
there is no generally agreed model of a bank. Diamond and Dybvig (1983)
discuss deposit insurance and suspension of convertibility. Anderlini (1990)
argues for a lender-of-last-resort facility which we did not discuss here.

In recent years, the debate about prudential control has shifted more to cap-
ital adequacy requirements and their impact on the banking business. This
shift in interest is linked to the introduction of capital standards for banks
internationally agreed upon by the members of the Bank for International
Settlements.

Exercises

1. Consider the case of deposit insurance and assume that there is a fixed fee for in-
suring the bank which has to be paid in period 0.

(a) Show in a diagram how this fee affects the return schedules in period 1
and in period 2.

(b) Analyse in the diagram the effects of such a fee on the degree of protec-
tion the insurance scheme provides and on the feasibility of the bank.

() How would this analysis be changed if the fee had to be paid in period 12
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2. Consider a deposit insurance scheme that would guarantee only the deposit in
each period.

(a) Draw a diag howing the repay hedules that a depositor faces
in this case. Will such an insurance scheme provide protection from a bank
run?

(b) By how much must the guaranteed repayment in period 2 exceed the re-
payment in period 1 to prevent a bank run?

(c) Discuss the effectiveness of an insurance scheme which guarantees a re-
payment in period 2 that exceeds the repayment that the bank can provide in
period 1 by a fixed margin.

3. It is argued in this chapter that deposit insurance and suspension of convert-
ibility can effectively prevent bank-run equilibria at no cost.

(a) Explain this proposition.

(b) Will this proposition remain true if the bank’s investment can fail but
consumers get no signal about the state of the investment project?
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TOWARDS APPLICATION:
FINANCIAL MARKETS
AND FINANCIAL
INTERMEDIARIES

In this final chapter, we present an overview of the theoretical material contained in
earlier chapters, and attempt to relate the current state of the theory of financial eco-
nomics to events unfolding in actual financial institutions and markets. One of the
exciting features of financial economics is that both theory and practice have ad-
vanced considerably in recent decades. More than that, a number of practical devel-
opments have followed almost immediately upon new theoretical insights. A
prominent example of this latter point is the rapid practical implementation of the
theoretical breakthrough achieved by Fischer Black and Myron Scholes in their solu-
tion of the option pricing problem.

A theme of the chapter is the continuing rivalry between financial intermediaries and
financial markets as alternative means of effecting intertemporal trade. Outside the
theoretical world of perfect markets, financial intermediaries have a role to play in
bringing borrowers and lenders together. As information technology becomes more
sophisticated and transaction costs are lowered, some, at least, of the obstacles to the
operation of markets are removed, and direct finance via market exchange of finan-
cial instruments displaces indirect finance via financial intermediaries. Financial in-
termediaries, in turn, respond with more elaborate products and processes in order
to recapture lost opportunities. The evolution of intertemporal trade in the real
world is marked by this dialectic struggle between alternative institutional arrange-
ments: financial markets and financial intermediaries.
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9.1 Financial Markets and Financial Intermediaries in
Theoretical Context

In a world of perfect markets, the intertemporal choice problem is solved by
agents interacting directly with one another in financial markets. The objects
of choice are financial claims. Such claims are enforceable contracts which
specify the precise conditions, including time and states of nature, under
which particular actions will be undertaken by the contracting parties. In such
an imaginary world, taken to the extreme, it is possible for agents to insure
fully against any conceivable contingency. Within the limits of their budget
constraints, agents can rearrange their consumption of goods and services in
an infinite variety of ways, both through time and across states of nature, so as
to achieve maximum satisfaction or utility.

The extension of the standard choice paradigm of atemporal micro-
economics to an intertemporal context is the starting-point for a discussion of
financial economics. At this level of generality and abstraction, it is clear that
extension to an intertemporal context adds nothing of substance to the stand-
ard problem of consumer utility maximization. Financial economics is a mere
derivative of general economics, albeit with a more elaborate set of commod-
ities which are the objects of trade. A seminal statement of this approach is
Debreu (1959).

Several strands of literature evolve from the foundation of perfect financial
markets. The first is what we recognize as the traditional Theory of Finance.
This involves the application of restrictive assumptions either to the prefer-
ences of economic agents or to the probability distributions attaching to the
return vectors of financial assets. Either way, the restrictions produce a theo-
retical framework within which agents choose amongst assets based on the
mean and variance of the probability distributions of asset returns.

This approach leads immediately to the familiar mean-variance analysis of
portfolio choice theory and subsequently to the develop of the Capital
Asset-Pricing Model. The focus throughout is on financial markets in which
defined claims are traded amongst agents. The questions of interest concern
the demands for different assets in equilibrium and the prices which clear asset
markets in equilibrium.

A second approach, conceptually distinct from the first and yet also growing
out of the perfect markets paradigm, is arbitrage pricing. In this case, no re-
strictions are placed on agents’ preferences. The foundation for developing
pricing rules in equilibrium is the fundamental notion in economics that
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perfect substitutes trade at the same price in equilibrium. This ‘law of one
price’ becomes the basis upon which a variety of pricing relationships can be
developed. Perhaps the most famous is the Black-Scholes option-pricing
model. For all its complexity, the Black-Scholes formula represents nothing
beyond the outworking of the forces of arbitrage in a model of contingent
claims markets.

The concept of arbitrage is also useful in developing much simpler pricing
relationships. The concept of net present value, viewed in this light, is an arbit-
rage relationship. When markets exist in which the individual elements of a
sequence of cash flows can be separately traded, the net present value of the
sequence is simply the sum of the separate market prices. This ‘linear’ property
of arbitrage models conveys a powerful insight into the pricing of complex
financial claims. The key to pricing complex claims in equilibrium is deter-
mining precisely how such complex claims can be decomposed into their con-
stituent elements. The price of the complex claim in equilibrium will be the
simple linear sum of the prices of the constituent elements. This assumes, of
course, that the constituent elements are separately traded in discrete markets.

A third stream of literature to flow from the paradigm of perfect financial
markets focuses on the financial structure of the firm. Publication of the
Modigliani-Miller (MM) ‘irrelevance’ results turned conventional wisdom on
its head. It would have been hard to imagine results more contrary to es-
tablished wisdom in corporate finance than the twin propositions that the
financial structure of the firm and its dividend policy had no impact on firm
value. After all, ‘everybody knew’ that gearing was of vital importance to the
success of a firm, and how sensitive the stock market was to a firm’s dividend
policy.

The significance of the MM findings was widely misinterpreted. Rather
than implying the futility of corporate finance, the MM results pointed to the
inadequacy of models based on the assumption of perfect financial markets.
Rather than denying the good sense in the advice given by corporate
financiers, both then and now, the results pointed to the inadequacy of the
theory in explaining the rationale for such advice.

The intellectual legacy of the MM theorems is the research agenda they
spawned seeking to establish precisely which aspects of the perfect markets
paradigm were responsible for their unexpected results. Subsequent ex-
plorations of the roles of taxes, clientele effects, and the like, have been singu-
larly productive of valuable insights into how financial markets work in reality.

A fourth development in the literature is the investigation of the in-
completeness of financial markets. This represents an attempt to relax one of
the conditions of the perfect markets paradigm, namely the existence of a
complete set of markets in which elementary financial claims can be traded.
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The absence of complete markets does not disturb the main results of the
theory. Itis still possible to derive the CAPM, for example, and the Modigliani—
Miller results generally remain intact. Incompleteness compromises the effi-
ciency properties of a general equilibrium. It is no longer true that a general
equilibrium allocation in financial markets is necessarily Pareto-optimal.

Perhaps of greater pracncal relevance is the fact that market incompleteness
destroys ‘value imization’ as the choice of utility-maximizing
shareholders for the objective function of the firm. In short, the Fisher
Separation Theorem no longer holds. In practical terms, this undermines the
use of profit maximization and its related capital budgeting rules, including
net present value maximization, as legitimate decision criteria in corporate
finance. In a world of incomplete markets, it is simply not true that share-
holders are uniquely served by ial pts to maximize profit. The
shareholders in fact face a collecuve choice problem of the Arrow type in
attempting to devise instructions for management. This raises the spectre of
owner- owner and owner—manager conflict.

The assumption of incompleteness represented a departure from one of
the tenets of the perfect markets paradigm. A more radical departure occurred
with the assumption of asymmetric information. A willingness to allow agents
to possess differential information about economic outcomes and the actions
of their fellows altered fundamental aspects of the paradigm of market ex-
change. In a world where agents are unable to observe the objects of trade with
equal facility or to observe each other’s actions, market exchange becomes
difficult if not impossible. The literature dealing with the implications of
asymmetric information investigates the existence of optimal arrangements
(if any) between would-be borrowers and would-be lenders in a world where
information is not commonto both parties.

The introduction of information asymmetries opens the way for incentive
problems. Once two parties to a contract cannot independently observe the
same set of outcomes at identical cost, there is the potential for one party to
dissemble, and in so doing, to induce the other party to make a decision con-
trary to his or her self-interest. Incentive problems of this type play havoc with
contracts, and hence with free exchange based on the anticipation of mutual
benefit. In short, incentive problems can close markets. At the same time, in-
centive problems stimulate the development of alternative institutional
arrangements designed to contain or control information problems suffi-
ciently to allow borrowers and lenders to interact profitably.

One of the earliest investigations of asymmetric information in financial
markets was the study of adverse selection in insurance. When the insured
party knows more about the true risk of loss than the insurer can discover,
there is an obvious tendency for bad risks to be attracted to the insurer. There
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is no outright solution to this problem but it can be controlled at some cost by
imposing certain conditions in the insurance contract designed to induce bad
risks to reveal themselves.

In analogous fashion, the debt contract is a device for eliciting behaviour on
the part of a borrower which is consistent with the interests of a lender, in the
absence of the lender being able to (costlessly) observe all states of nature. The
debt contract is a solution to the problem of asymmetric information in finan-
cial markets. Likewise, credit-rationing behaviour represents an efficient re-
sponse by lenders in the face of imperfect information and the incentive for
borrowers not to reveal their true circumstances. Both types of arrangement
seek to align incentives facing the two parties to a transaction so that mutually
beneficial intertemporal exchange can occur in circumstances where it would
otherwise be impossible.

Perhaps the most elab institutional resp to the p of asym-
metric information is the financial intermediary. When one combines asym-
metric information facing borrowers and lenders with their differing demands
for liquidity, it is easy to show that a bank issuing deposit contracts as liabilities
and holding loan contracts as assets is an optimal institutional arrangement.
The bank acts as a liquidity insurer, guaranteeing access to liquid funds on de-
mand to lenders while simultaneously meeting the needs of borrowers for
funds committed over the longer term. The key to this balancing act is the
bank’s ability to pool risks and release lenders from their fear of being caught
short of liquid funds.

One difficulty with this arrangement, as Diamond and Dybvig (1983) point
out, is that it can be subject to destabilizing bank runs. This possibility leads
naturally to a discussion of deposit insurance and bank regulation more gen-
erally. Such external intervention has traditionally been used to ‘patch up’ this
particular institutional response to asymmetric information in financial
markets.

9.2 Financial Markets and Financial Intermediaries in
Evolutionary Context

The focus of financial economics is intertemporal trade. In perfect markets,
such exchange takes place between economic agents directly without the ser-
vices of an intermediary. Financial intermediaries are superfluous in a world of
perfect financial markets. To establish a role for financial intermediaries re-
quires imperfection in some dimension of the operation of financial markets.
Financial intermediaries then provide a superior means of effecting exchange
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between ultimate parties to intertemporal trade, superior, that is, to no trade
atall or to the imperfect variety possible through direct exchange on financial
markets.

The evolution of financial systems is characterized by a continuing struggle
between financial intermediaries and financial markets. As imperfections in
the operation of markets recede with the development of new transactions
technology and/or new ways of harnessing information, intertemporal trade
on markets substitutes for financial intermediation. In turn, financial inter-
mediaries find ways of improving their services so as once again to establish
their supremacy, at least in certain dimensions, over market-based alternatives.

There is a sense in which ‘the writing is on the wall’ for financial inter-
mediaries. Evolution of financial systems is consistently in the direction of
ameliorating obstacles to the more efficient operation of financial markets.
Theory is quite unequivocal in its prediction that efficient financial markets
render financial intermediaries obsolete.

‘While one can cast the history of financial systems in terms of attempts to
reconcile the competing claims of financial intermediaries and financial mar-
kets, the process is far from complete. One can break into history and observe
both the phenomenal advance in the use of financial markets and also the con-
siderable counter-reaction of financial intermediaries seeking to retain their
raison d’étre and to specialize in those services which, for the present at least,
remain beyond the reach of financial markets. In this section, we review the
current state of play and suggest some directions the evolutionary struggle
might take in the future. For convenience, we restrict our attention to banks.
This is not to imply that non-bank financial intermediaries are unaffected by
current developments but rather that banks, as quintessential financial inter-
mediaries, are most exposed to evolutionary change in financial markets, and
are, accordingly, the best exemplar of the outworking of challenge and re-
sponse in financial systems.

9.2.1 Disintermediation

Two related developments have transformed the practice of banking in recent
years. The first is disintermediation—the tendency of firms and, in some cases
also individuals, to access financial markets directly and independently of a
financial intermediary. It is increasingly the case that large firms, especially
multinational corporations, can raise funds directly in capital markets.
Whereas in the past, an intermediary would guarantee access to ultimate
lenders on superior terms to those available to non-financial corporations,
nowadays large corporations can raise funds in their own names at least as
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cheaply, and in many cases more cheaply, than financial intermediaries. This
has led to a developing trend whereby firms large enough to access capital
markets directly bypass intermediaries.

The increasing capacity of large firms to disintermediate is partly a result of
improved information technology which allows ultimate lenders to inform
themselves about the characteristics of borrowers more easily and at lower
cost. It is also the result of the sheer size and multinational presence of the
world’s largest corporations. Institutions which were once known only in local
markets now have an international presence and recognition. This is a growing
trend.

The development was abetted by substantial deterioration in the credit
ratings of some of the world’s largest banks on account of defaults on loans to
certain developing countries (notably, but not exclusively, in Latin America).
As the credit ratings of banks fell, large corporations found themselves with
superior credit ratings to those of their bankers, and were therefore induced to
access capital markets themselves so as to secure cheaper funding. The even-
tual recovery of banks’ balance sheets did not reverse the situation since, by
then, banks were subject to more stringent capital requirements under guide-
lines laid down by the Bank for International Settlements. Tougher capital
regulations on banks have helped to preserve the funding advantage some
large companies have in accessing international capital markets on their own.

Having recognized the importance of disintermediation, it should be
pointed out that the process has not left banks completely at a loss. The most
powerful effect of disintermediation is elimination of banks’ balance sheet
funding of large corporate credits. Large corporations tend not to borrow
from banks. This does not mean that banks have no involvement with corpor-
ate fund-raising but rather that the nature of the involvement is changing.
Banks are more likely to act as advisers and/or underwriters than outright
lenders. Such ancillary functions are still important in securing direct access to
capital markets by corporate borrowers. James (1987) provides convincing
evidence of the continuing importance of the involvement of banks in facilit-
ating corporate access to financial markets.

Nevertheless, the fact remains that the role of banks in fund-raising for large
firms has become the more limited one of accessory rather than intermediary.
The funds are raised by the firms themselves, albeit with advice and support by
banks, and do not come via the balance sheet intermediation of banks. This is
adevelopment which is exercising the minds of bank strategists the world over.
Is it possible that banks may eventually outlive their usefulness to large cor-
porations?

For the present at least, the involvement of a financial intermediary is still
required at some stage during the fund-raising process. Corporates have
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discovered, however, that the financial intermediary need not be an independ-
ent bank. Another chall to traditional fi ial intermediaries has come
from corporate treasuries or ‘in house banks’ Such involvement of financial
intermediaries as is required can be provided as easily and, in some cases more
cheaply, by the corporation’s own financial subsidiary. And if the subsidiary
can do this for its parent company, why not for others? Banks are facing com-
petition not only from corporations themselves but also from their financial
subsidiaries. The financial arms of General Electric and British Petroleum are
now larger than many banks and compete directly with banks in offering an-
cillary financial services, both to their parents and to the corporate world more
generally.

Banks have responded to this development in two ways. The first is to try to
get closer to their corporate clients by forming ‘relationships’. Such relation-
ships involve special treatment of the kind a firm might expect from its own
subsidiary. In some cases, explicit equity involvement of the bank with its
client, as is traditional in Germany and Japan but less common in Anglo-Saxon
banking systems, has developed to enhance the closeness of the relationship.
Banks’ ability to adopt this strategy is limited in some countries by central
bank regulatory proscription of equity links between banks and their com-
mercial clients.

The second response of banks to disintermediation by their larger clients is
to concentrate their efforts in those sectors of the market less able to take ad-
vantage of direct finance. Banks have moved ‘down market’ towards medium-
size and small firms and personal clients. At present, such clients are mostly
unable to disintermediate on account of the absence of sufficient information
about their creditworthiness to enable them to access markets directly. Such
firms and individuals can only raise funds via an intermediary whose credit-
worthiness substitutes for that of the client and grants access to ultimate
lenders.

Such a strategy is feasible so long as this sector of the market is unable to dis-
intermediate. The question posed to bank strategists is how long it will be
before disintermediation is a possibility for these clients as well. Is it a just a
matter of time or will there always be a large enough constituency of firms and
individuals unable to access markets directly who will need the services of an
intermediary?

9.2.2 Securitization

The second trend in financial systems around the world is known by the some-
what awkward term: securitization. This refers to the process whereby financial
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intermediaries, banks in particular, convert claims held as assets on their bal-
ance sheets into marketable securities. The genesis of this process was once
again associated with the Latin American debt crisis of the 1980s. Banks found
themselves with large tranches of poor-quality credits on their books and de-
clining credit ratings as a result. We noted above that this helped to promote
disintermediation by large corporates. Banks responded by trying to find ways
to rid themselves of the bad loans. In ordinary circumstances, they might have
foreclosed on the borrower but this option was not available with sovereign
creditors. Securitization was the answer to their dilemma.

Securitization involves sales of loans from the books of banks into a specially
designed trust which then issues securities against the loans directly into the
capital market. The banks gain by removing non-performing loans from their
balance sheets. The capital market gains by being able to purchase sovereign
credits, albeit low-quality, high-risk credits, at appropriately discounted mar-
ket prices. The securities which resulted from this first instance of securitiza-
tion were suitably known as ‘junk’ bonds.

From these inauspicious beginnings, securitization has grown to become a
major force in corporate finance. It has also found its way into retail consumer
markets, including mortgage finance, consumer finance, and student loans.
The attraction for banks is that the funding of loans can be separated from
their origination. When banks hold loans on their balance sheets, they must
obtain sufficient capital to meet the capital adequacy requirements imposed
by central banks. Where these are onerous, such requirements may erode the
competitive advantage of banks in acting as an intermediary. One response is
to restrict the involvement of banks to loan origination. The funding of the
loans can take place via the capital market once they are sold by the bank to a
special purpose trust which issues securities against the loans.

The arrangement suits banks because it enables them to bring forward their
revenue flows from lending by crystallizing them in the form of fees. The more
loans are written and securitized, the larger the volume of revenue from fees,
without the need to service the loans written with capital on the balance sheet.
Borrowers gain by being given access to funds on a cheaper basis than would
ordinarily be available through bank ‘on-balance-sheet’ finance. Lenders gain
by being able to earn capital market interest rates on their funds rather than
bank deposit rates, while at the same time knowing exactly what types of
credits secure their claims on the trust.

Securitization has been described as a technological breakthrough with the
potential to displace traditional balance sheet borrowing and lending by inter-
mediaries (Bryan 1991). It need not eliminate a role for intermediaries but cer-
tainly restricts the range of their activities. Rather than handle both
origination and funding, intermediaries are restricted to origination, where
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they still possess some competitive advantage, while funding becomes a mat-
ter of issuing securities directly to the capital market.

Like disintermediation, securitization represents the substitution of trade
on financial markets for functions traditionally performed by financial inter-
mediaries. Intermediaries become involved in cases where ultimate borrowers
cannot meet ultimate lenders face to face in the financial markets on account
of excessive transaction costs, imperfect information, or both. Securitization
represents a method whereby financial intermediaries can add enough
information to the promises of ultimate borrowers for the market once again
to take over. By originating loans and allowing recourse in the event of default,
financial intermediaries screen loans and enhance their creditworthiness
sufficiently for them to be traded in open financial markets. The role of the
intermediary is not displaced entirely by this process but is substantially re-
stricted in scope.

Securitization may not spell the end of intermediaries but it may mean the
end of intermediation as we know it, at least in areas where credits can be
securitized. Again, the question arises as to whether there are any natural
limits to securitization. Are there any loans which could not, even in principle,
be securitized? At present, the advance of securitization seems inexorable, with
assets as diverse as car loans and credit card receivables having been securitized
in recent years. The test will come with less homogenous assets like loans to
small businesses and personal loans. There may still be too little information
about the borrowers and too little security available in such cases to enable se-
curitization to proceed. Small business lending and personal sector loans may
yet prove to be the final stronghold of balance sheet intermediation. Or, alter-
natively, it may be the last frontier of securitization and the scene of the final
conquest by financial markets.

9.3 Conclusion

Financial economics studies the interaction of borrowers and lenders as they
seek to optimize their choices amongst an unlimited variety of intertemporal
options. In recent years, both the theory and the praxis of financial economics
have advanced substantially, making financial economics one of the most ex-
citing fields of the discipline in which to work.

Many aspects of the operation of financial markets and financial institutions
remain a mystery. While the basic motivation for, and form of, intertemporal
exchange is understood, detailed explanations of a variety of phenomena,
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including such fundamental processes as price determination, still elude even
the most advanced researchers. This book is written in the hope that today’s
students will be sufficiently fascinated by the unravelling story of financial eco-
nomics to make their own contribution to a deeper understanding of these
unique markets, their institutions, and their practices.
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